2,882
Views
78
CrossRef citations to date
0
Altmetric
Articles

A Review of Vapor Chambers

, &

References

  • D. J. Faulkner, M. Khotan, and R. Shekarriz, “Practical design of a 1000 W/cm/sup 2/cooling system [High Power Electronics],” Semiconductor Thermal Measurement and Management Symposium, 2003. Ninteenth Annual IEEE, San Jose, CA, 11–13 March 2003.
  • D. J. Faulkner, and R. Shekarriz, “Forced convective boiling in microchannels for kW/cm2 electronics cooling,” ASME 2003 Heat Transfer Summer Conference, Las Vegas, NV, 21–23 July 2003.
  • Celsia Available from http://celsiainc.com/blog-heat-pipes-and-vapor-chambers-whats-the-difference/, accessed October 2017.
  • A. Faghri, “Review and advances in heat pipe science and technology,” J. Heat Transfer, vol. 134, no. 12, pp. 123001–123001, 2012. doi:10.1115/1.4007407.
  • Celsia Available from http://celsiainc.com/vapor-chamber-types-benefits-performance-custom-design/, accessed January 2018.
  • M. Mochizuki, T. Nguyen, K. Mashiko, Y. Saito, T. Nguyen, and V. Wuttijumnong, “A Review of heat pipe application including new opportunities,” Front. Heat Pipes, vol. 2, no.1, 2011. doi:10.5098/fhp.v2.1.3001.
  • M. Lu, L. Mpk, and R. J. Bezama, “A graphite foams based vapor chamber for chip heat spreading,” J Electron Packag, ASME, vol. 128, pp. 427–431, 2006. doi:10.1115/1.2351908.
  • S. W. Chi, Heat Pipe Theory and Practice, pp. 33–77, McGraw- Hill, NY, 1976.
  • A. Faghri, Heat Pipe Science and Technology, pp. 61–105, Taylor and Francis, Washington, D.C., 1995.
  • Advanced Cooling Technologies Available from https://www.1-act.com/, accessed October 2017.
  • R. Ranjan, J. Y. Murthy, S. V. Garimella, D. H. Altman, and M. T. North, “Modeling and design optimization of ultrathin vapor chambers for high heat flux applications,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no.2, pp. 1465–1479, 2012. doi:10.1109/TCPMT.2012.2194738.
  • D. Reay, and P. Kew, Heat Pipes, 5th ed., Butterworth-Heinemann, 2006.
  • K. N. Shukla, “Heat pipe for aerospace applications—An overview,” Journal of Electronics Cooling and Thermal Control, vol. 5, no.1, pp. 1–14, 2015. doi:10.4236/jectc.2015.51001.
  • T.-E. Tsai, H.-H. Wu, C.-C. Chang, and S.-L. Chen, “Two-phase closed thermosyphon vapor-chamber system for electronic cooling,” Int. Commun. Heat Mass Transfer, vol. 37, no.5, pp. 484–489, 2010. doi:10.1016/j.icheatmasstransfer.2010.01.010.
  • J. A. Weibel, S. V. Garimella, J. Y. Murthy, and D. H. Altman, “Optimization of mass transport in integrated nanostructured wicking surfaces for the reduction of evaporative thermal resistance, 2010 "12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1–7, 2010.
  • J. A. Weibel, and S. V. Garimella, “Visulation of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks,” Int. J. Heat Mass Transfer, vol. 53, no.13–14, pp. 3498–3510, 2012. doi:10.1016/j.ijheatmasstransfer.2012.03.021.
  • Y. Wang, and K. Vafai, “An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe,” Int. J. Heat Mass Transfer, vol. 43, no.15, pp. 2657–2668, 2000. doi:10.1016/S0017-9310(99)00300-2.
  • J. Ma, X. Fu, R. Hu, and X. Luo, “Effect of inclination angle on the performance of a kind of vapor chamber,” Journal of Solid State Lighting, vol. 1, no. 1, pp. 1–9, 2014. doi:10.1186/s40539-014-0012-7.
  • M.-C. Tsai, S.-W. Kang, and K. Vieira de Paiva, “Experimental studies of thermal resistance in a vapor chamber heat spreader,” Appl. Therm. Eng., vol. 56, no.1–2, pp. 38–44, 2013. doi:10.1016/j.applthermaleng.2013.02.034.
  • X. Ji, J. Xu, and A. M. Abanda, “Copper foam based vapor chamber for high heat flux dissipation,” Exp. Therm. Fluid Sci., vol.40, pp. 93–102, 2012. doi:10.1016/j.expthermflusci.2012.02.004.
  • H.-S. Huang, Y.-C. Chiang, C.-K. Huang, and S.-L. Chen, “Experimental investigation of vapor chamber module applied to high-power light-emitting diodes,” Exp. Heat Transfer, vol. 22, no. 1, pp. 26–38, 2009. doi:10.1080/08916150802530187.
  • P. Naphon, S. Wongwises, and S. Wiriyasart, “On the thermal cooling of central processing unit of the pcs with vapor chamber,” Int. Commun. Heat Mass Transfer, vol. 39, no.8, pp. 1165–1168, 2012. doi:10.1016/j.icheatmasstransfer.2012.07.013.
  • J.-C. Wang, and R.-T. Wang, “A novel formula for effective thermal conductivity of vapor chamber,” Exp. Tech., vol. 35, no. 5, pp. 35–40, 2011. doi:10.1111/j.1747-1567.2010.00652.x.
  • J.-Y. Chang, R. S. Prasher, S. Prstic, P. Cheng, and H. B. Ma, “Evaporative thermal performance of vapor chambers under nonuniform heating conditions,” J. Heat Transfer, vol. 130, no. 12, pp. 121501–121501, 2008. doi:10.1115/1.2976786.
  • J.-H. Liou, C.-W. Chang, C. Chao, and S.-C. Wong, “Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes,” Int. J. Heat Mass Transfer, vol. 53, no. 7–8, pp. 1498–1506, 2010. doi:10.1016/j.ijheatmasstransfer.2009.11.046.
  • Y. P. Zhang, X. L. Yu, Q. K. Feng, and L. H. Zhang, “Vapor chamber acting as a heat spreader for power module cooling,” J. Therm. Sci. Eng. Appl., vol. 1, no. 2, pp. 021003-1-8, 2009. doi:10.1115/1.4000285.
  • S.-S. Hsieh, R.-Y. Lee, J.-C. Shyu, and S.-W. Chen, “Thermal performance of flat vapor chamber heat spreader,” Energy Convers. Manage., vol. 49, no. 6, pp. 1774–1784, 2008. doi:10.1016/j.enconman.2007.10.024.
  • S. Ravi, R. Dharmarajan, and S. Moghaddam, “Physics of fluid transport in hybrid biporous capillary wicking microstructures,” Langmuir, vol. 32, no.33, pp. 8289–8297, 2016. doi:10.1021/acs.langmuir.6b01611.
  • Z. Ming, L. Zhongliang, and M. Guoyuan, “The experimental and numerical investigation of a grooved vapor chamber,” Appl. Therm. Eng., vol. 29, no. 2–3, pp. 422–430, 2009. doi:10.1016/j.applthermaleng.2008.03.030.
  • Y. Horiuchi, et al. “Micro channel vapor chamber for high heat spreading,” Electronics Packaging Technology Conference, EPTC 2008. 10th, Singapore, Singapore, pp. 749–754, 9–12 December 2008.
  • P. Naphon, and S. Wiriyasart, “On the thermal performance of the vapor chamber with micro-channel for unmixed air flow cooling,” Engineering Journal, vol. 19, no.1, pp. 125–137, 2015. doi:10.4186/ej.2015.19.1.125.
  • Y.-T. Chen, S.-W. Kang, Y.-H. Hung, C.-H. Huang, and K.-C. Chien, “Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 864–870, 2013. doi:10.1016/j.applthermaleng.2012.10.035.
  • J. C. Hsieh, H. J. Huang, and S. C. Shen, “Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for led lighting module,” Microelectron. Reliab., vol. 52, no.6, pp. 1071–1079, 2012. doi:10.1016/j.microrel.2011.11.016.
  • R. Boukhanouf, and A. Haddad, “Simulation and experimental investigation of thermal performance of a miniature flat plate heat pipe,” Advances in Mechanical Engineering, vol. 2013, Article ID 474935, 8 pages, 2013.
  • U. Vadakkan, G. M. Chrysler, J. Maveety, and M. Tirumala, “A novel carbon nano tube based wick structure for heat pipes/vapor chambers,” IEEE, pp. 102–104, 2007.
  • W. Liu, Y. Peng, T. Luo, Y. Luo, and K. Huang, “The performance of the vapor chamber based on the plant leaf,” Int. J. Heat Mass Transfer, vol. 98, pp. 746–757, 2016. doi:10.1016/j.ijheatmasstransfer.2016.02.091.
  • S.-C. Wong, J.-H. Liou, and C.-W. Chang, “Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes,” Int. J. Heat Mass Transfer, vol. 53, no.19–20, pp. 3792–3798, 2010. doi:10.1016/j.ijheatmasstransfer.2010.04.031.
  • F. Lefèvre, J.-B. Conrardy, M. Raynaud, and J. Bonjour, “Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure,” Appl. Therm. Eng., vol. 37, pp. 95–102, 2012. doi:10.1016/j.applthermaleng.2011.11.022.
  • H. H. Qiu, “Multiphase flow and heat transfer on micro/nanostructured surfaces,” 10th International Conference Fluid Mechanics and Thermodynamics (HEFAT2014), Orlando, FL, 14–16 July 2014.
  • Z. Sun, and H. Qiu, “An asymmetrical vapor chamber with multiscale micro/nanostructured surfaces,” Int. Commun. Heat Mass Transfer, vol.58, pp. 40–44, 2014. doi:10.1016/j.icheatmasstransfer.2014.08.027.
  • A. A. A. Attia, and El-Assal, BTA, “Experimental investigation of vapor chamber with different working fluids at different charge ratios,” Ain Shams Engineering Journal, vol. 3, no. 3, pp. 289–297, 2012. doi:10.1016/j.asej.2012.02.003.
  • T. Shimura, H. Sho, and Y. Nakamura, “The Aluminum flat heat pipe using cyclopentane as working fluid,” The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2002, San Diego, CA, pp. 224–229, 30 May-1 June 2002.
  • Y. Peng, et al. “The performance of the novel vapor chamber based on the leaf vein system,” Int. J. Heat Mass Transfer, vol. 86, pp. 656–666, 2015. doi:10.1016/j.ijheatmasstransfer.2015.01.126.
  • P. Naphon, S. Wiriyasart, and S. Wongwises, “Thermal cooling enhancement techniques for electronic components,” Int. Commun. Heat Mass Transf., vol. 61, pp. 140–145, 2015. doi:10.1016/j.icheatmasstransfer.2014.12.005.
  • C.-K. Huang, C.-Y. Su, and K.-Y. Lee, “The effects of vapor space height on the vapor chamber performance,” Exp. Heat Transfer, vol.25, no.1, pp. 1–11, 2012. doi:10.1080/08916152.2011.556310.
  • S. Lips, F. Lefèvre, and J. Bonjour, “Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe,” Int. J. Heat Mass Transfer, vol. 53, no. 4, pp. 694–702, 2010. doi:10.1016/j.ijheatmasstransfer.2009.10.022.
  • C. Wang, Z. Liu, G. Zhang, and M. Zhang, “Experimental investigations of flat plate heat pipes with interlaced narrow grooves or channels as capillary structure,” Exp. Therm. Fluid Sci., vol. 48, pp. 222–229, 2013. doi:10.1016/j.expthermflusci.2013.03.004.
  • P. Naphon, S. Wongwises, and S. Wiriyasart, “Application of two-phase vapor chamber technique for hard disk drive cooling of PCs,” Int. Commun. Heat Mass Transfer, vol. 40, pp. 32–35, 2013. doi:10.1016/j.icheatmasstransfer.2012.10.014.
  • H. Peng, J. Li, and X. Ling, “Study on heat transfer performance of an aluminum flat plate heat pipe with fins in vapor chamber,” Energy Convers. Manage., vol. 74, pp. 44–50, 2013. doi:10.1016/j.enconman.2013.05.004.
  • H.-Y. Li, M.-H. Chiang, C.-I. Lee, and W.-J. Yang, “Thermal performance of plate-fin vapor chamber heat sinks,” Int. Commun. Heat Mass Transfer, vol. 37, no.7, pp. 731–738, 2010. doi:10.1016/j.icheatmasstransfer.2010.05.015.
  • H.-Y. Li, and M.-H. Chiang, “Effects of shield on thermal-fluid performance of vapor chamber heat sink,” Int. J. Heat Mass Transfer, vol. 54, no. 7–8, pp. 1410–1419, 2011. doi:10.1016/j.ijheatmasstransfer.2010.11.052.
  • V. Michels, F. H. Milanez, and M. B. H. Mantelli, “Vapor chamber heat sink with hollow fins,” Journal of Brazilian Society of Mechanical Sciences and Engineering, vol. 34, no. 3, pp. 233–237, 2012. doi:10.1590/S1678-58782012000300002.
  • J. C. Wang, “Development of vapour chamber-based VGA thermal module,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20, no. 4, pp. 416–428, 2010. doi:10.1108/09615531011035811.
  • S. G. Kandlikar, “Critical heat flux in subcooled flow boiling-an assessment of current understanding and future directions for research,” Multiphase Science and Technology, vol.13, no.3, pp. 207–232, 2001.
  • J. Wei, A. Chan, and D. Copeland, “Measurement of vapor chamber performance [Heatsink Applications],” IEEE, pp. 191–194, 2003.
  • S.-C. Wong, K.-C. Hsieh, J.-D. Wu, and W.-L. Han, “A novel vapor chamber and its performance,” Int. J. Heat Mass Transfer, vol. 53, no. 11–12, pp. 2377–2384, 2010. doi:10.1016/j.ijheatmasstransfer.2010.02.001.
  • S. S. Kim, J. A. Weibel, T. S. Fisher, and S. V. Garimella, “Thermal performance of carbon nanotube enhanced vapor chamber wicks,” 2010 14th International Heat Transfer Conference, Washington, D.C., pp. 417–424, 8–13 August 2010.
  • X. Ji, J. Xu, A. M. Abanda, and Q. Xue, “A Vapor Chamber using extended condenser concept for ultra-high heat flux and large heater area,” Int. J. Heat Mass Transfer, vol. 55, no. 17–18, pp. 4908–4913, 2012. doi:10.1016/j.ijheatmasstransfer.2012.04.018.
  • Y.-T. Chen, J.-M. Miao, D.-Y. Ning, T.-F. Chu, and W.-E. Chen, “Thermal performance of a vapor chamber heat pipe with diamond-copper composition wick structures,” Microsystems, Packaging, Assembly and Circuits Technology Conference, IMPACT, 4th International, Taipei, Taiwan, pp. 340–343, 21–23 Oct. 2009.
  • A. H. R. Boukhanouf, and C. Buffone, in Advanced Computational Methods in Heat Transfer IX, pp. 270–279, ed. B. Sunden & C. A. Brebbia, Southampton, UK, 2006.
  • R. Boukhanouf, A. Haddad, M. T. North, and C. Buffone, “Experimental investigation of a flat plate heat pipe performance using ir thermal imaging camera,” Appl. Therm. Eng., vol. 26, no. 17–18, pp. 2148–2156, 2006. doi:10.1016/j.applthermaleng.2006.04.002.
  • Y. Xuan, Y. Hong, and Q. Li, “Investigation on Transient behaviors of flat plate heat pipes,” Exp. Therm. Fluid Sci., vol. 28, no. 2–3, pp. 249–255, 2004. doi:10.1016/S0894-1777(03)00047-5.
  • G. S. Hwang, et al. “Multi-artery heat pipe spreader: experiment,” Int. J. Heat Mass Transfer, vol. 53, no.13–14, pp. 2662–2669, 2010. doi:10.1016/j.ijheatmasstransfer.2010.02.046.
  • J.-C. Wang, R.-T. Wang, T.-L. Chang, and D.-S. Hwang, “Development of 30 watt high-power LEDs vapor chamber-based plate,” Int. J. Heat Mass Transfer, vol. 53, no.19–20, pp. 3990–4001, 2010. doi:10.1016/j.ijheatmasstransfer.2010.05.018.
  • Y. Tang, D. Yuan, L. Lu, and Z. Wang, 2013, “A multi-artery vapor chamber and its performance,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 15–23, 2013. doi:10.1016/j.applthermaleng.2013.06.014.
  • G. S. Hwang, et al. 2011, “Multi-artery heat-pipe spreader: lateral liquid supply,” Int. J. Heat Mass Transfer, vol. 54, pp. 2334–2340. doi:10.1016/j.ijheatmasstransfer.2011.02.029.
  • Y. S. Ju, et al. “Planar vapor chamber with hybrid evaporator wicks for the thermal management of high-heat-flux and high-power optoelectronic devices,” Int. J. Heat Mass Transfer, vol. 60, pp. 163–169, 2013. doi:10.1016/j.ijheatmasstransfer.2012.12.058.
  • J.-C. Wang, R.-T. Wang, T.-L. Chang, and D.-S. Hwang, “Development of 30 watt high-power LEDs vapor chamber-based plate,” Int. J. Heat Mass Transfer, vol. 53, no. 19–20, pp. 3990–4001, 2010. doi:10.1016/j.ijheatmasstransfer.2010.05.018.
  • R.-T. Wang, J.-C. Wang, and T.-L. Chang “Experimental analysis for thermal performance of a vapor chamber applied to high-performance servers,” Journal of Marine Science and Technology-Taiwan, vol.19, no.4, pp. 353–36, 2011.
  • Y. Wang, and G. P. Peterson, “Investigation of a novel flat heat pipe,” J. Heat Transfer, vol. 127, no. 2, pp. 165–170, 2005. doi:10.1115/1.1842789.
  • D. H. S. Obata, J. C. Fukushima, T. A. Alves, M. A. Bazani, and A. T. Paschoalini, “Experimental study of a Cu-Mo Alloy vapor chamber,” MATEC Web Conference, vol.39, p. 2001, 4 pages, 2016. doi:10.1051/matecconf/20163902001.
  • M. Wei, S. Somasundaram, B. He, Q. Liang, C. S. Tan, and E. N. Wang, “Experimental characterization of si micropillar based evaporator for advanced vapor chambers,” Electronics Packaging Technology Conference (EPTC), 2014 IEEE 16th, pp. 335–340, 2014.
  • S.-C. Wong, S.-F. Huang, and K.-C. Hsieh, “Performance tests on a novel vapor chamber,” Appl. Therm. Eng., vol. 31, no. 10, pp. 1757–1762, 2011. doi:10.1016/j.applthermaleng.2011.02.020.
  • J. S. Go, “Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling,” Sensor and Actuators A: Physical, vol.121, no. 2, pp. 549–556, 2005. doi:10.1016/j.sna.2005.03.007.
  • S. Lips, F. Lefèvre, and J. Bonjour, “Nucleate boiling in a flat grooved heat pipe,” Int. J. Therm. Sci., vol. 48, no. 7, pp. 1273–1278, 2009. doi:10.1016/j.ijthermalsci.2008.11.011.
  • F. Lefèvre, R. Rullière, S. Lips, and J. Bonjour, “Confocal microscopy for capillary film measurements in a flat plate heat pipe,” J. Heat Transfer, vol. 132, no. 3, pp. 031502–1-6, 2010. doi:10.1115/1.4000057.
  • S. Lips, F. Lefèvre, and J. Bonjour, “Physical mechanisms involved in grooved flat heat pipes: experimental and numerical analyses,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1243–1252, 2011. doi:10.1016/j.ijthermalsci.2011.02.008.
  • S.-S. Hsieh, R.-Y. Lee, J.-C. Shyu, and S.-W. Chen, “Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar,” Energy Convers. Manage., vol. 48, no.10, pp. 2708–2717, 2007. doi:10.1016/j.enconman.2007.04.022.
  • S. Harmand, R. Sonan, M. Fakès, and H. Hassan, “Transient cooling of electronic components by flat heat pipes,” Appl. Therm. Eng., vol. 3, no. 11–12, pp. 1877–1885, 2011. doi:10.1016/j.applthermaleng.2011.02.034.
  • M. Aghvami, and A. Faghri, “Analysis of flat heat pipes with various heating and cooling configurations,” Appl. Therm. Eng., vol. 31, no.14–15, pp. 2645–2655, 2011. doi:10.1016/j.applthermaleng.2011.04.034.
  • Y. Peng, W. Liu, N. Wang, Y. Tian, and X. Chen, “A novel wick structure of vapor chamber based on the fractal architecture of leaf vein,” Int. J. Heat Mass Transfer, vol. 63, pp. 120–133, 2013. doi:10.1016/j.ijheatmasstransfer.2013.02.021.
  • M. Shafahi, V. Bianco, K. Vafai, and O. Manca, “Thermal performance of flat-shaped heat pipes using nanofluids,” Int. J. Heat Mass Transfer, vol. 53, no. 7–8, pp. 1438–1445, 2010. doi:10.1016/j.ijheatmasstransfer.2009.12.007.
  • M. Reyes, D. Alonso, J. R. Arias, and A. Velazquez, “Experimental and theoretical study of a vapour chamber based heat spreader for avionics applications,” Appl. Therm. Eng., vol. 37, pp. 51–59, 2012. doi:10.1016/j.applthermaleng.2011.12.050.
  • F. Lefèvre, and M. Lallemand, “Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components,” Int. J. Heat Mass Transfer, vol. 49, no. 7–8, pp. 1375–1383, 2006. doi:10.1016/j.ijheatmasstransfer.2005.10.001.
  • F. Lefèvre, R. Rullière, G. Pandraud, and M. Lallemand, “Prediction of the temperature field in flat plate heat pipes with micro-grooves – experimental validation,” Int. J. Heat Mass Transfer, vol. 51, no.15–16, pp. 4083–4094, 2008. doi:10.1016/j.ijheatmasstransfer.2007.12.007.
  • R. Sonan, S. Harmand, J. Pellé, D. Leger, and M. Fakès, “Transient thermal and hydrodynamic model of flat heat pipe for the cooling of electronics components,” Int. J. Heat Mass Transfer, vol. 51, no. 25–26, pp. 6006–6017, 2008. doi:10.1016/j.ijheatmasstransfer.2008.04.071.
  • Y. Koito, H. Imura, M. Mochizuki, Y. Saito, and S. Torii, “Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber,” Appl. Therm. Eng., vol. 26, no. 14–15, pp. 1669–1676, 2006. doi:10.1016/j.applthermaleng.2005.11.012.
  • T. H. Wang, C.-C. Lee, and Y.-S. Lai, “Thermal characteristics evaluation for board-level high performance flip-chip package equipped with vapor chamber as heat spreader,” Microelectronic. Engineering, vol. 87, no.12, pp. 2463–2467, 2010. doi:10.1016/j.mee.2010.05.002.
  • J. A. Weibel, S. V. Garimella, J. Y. Murthy, and D. H. Altman, “Design of integrated nanostructured wicks for high-performance vapor chambers,” IEEE Transactions on Components Packaging, and Manufacturing Technology, vol. 1, no. 6, pp. 859–867, 2011. doi:10.1109/TCPMT.2011.2132721.
  • R. S. Prasher, “A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology,” J. Electron. Packag., vol. 125, no. 3, pp. 378–385, 2003. doi:10.1115/1.1602479.
  • S. Dhanabal, M. Annamalia, and K. Muthusamy, “Numerical analysis of thermal performance of flat heat pipe,” International Refrigeration and Air Conditioning Conference, Purdue University, Purdue, IN, 16–19 July 2012.
  • U. Vadakkan, G. M. Chrysler, and S. Sane, “Silicon/Water vapor chamber as heat spreaders for microelectronic packages,” IEEE, pp. 182–186, 2005.
  • Y.-S. Chen, et al. “Numerical simulation of a heat sink embedded with a vapor chamber and calculation of effective thermal conductivity of a vapor chamber,” Appl. Therm. Eng., vol. 29, no. 13, pp. 2655–2664, 2009. doi:10.1016/j.applthermaleng.2008.12.009.
  • D. H. Min, G. S. Hwang, and M. Kaviany, “Multi-artery, heat-pipe spreader,” Int. J. Heat Mass Transfer, vol. 52, no. 3–4, pp. 629–635, 2009. doi:10.1016/j.ijheatmasstransfer.2008.07.021.
  • X. P. Wu, et al. “Low profile-high performance vapor chamber heat sinks for cooling high-density blade servers,” Twenty Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007, pp. 174–178, 2007.
  • X. Wei, and K. Sikka, “Modeling of vapor chamber as heat spreading devices,” IEEE, pp. 578–585, 2006.
  • Y.-S. Chen, K.-H. Chien, C.-C. Wang, T.-C. Hung, and B.-S. Pei, “A simplified transient three-dimensional model for estimating the thermal performance of the vapor chambers,” Appl. Therm. Eng., vol. 26, no. 17–18, pp. 2087–2094, 2006 doi:10.1016/j.applthermaleng.2006.04.008.
  • Y. Koito, H. Imura, M. Mochizuki, Y. Saito, and S. Torii, “Fundamental experiments and numerical analyses on heat transfer characteristics of a vapor chamber,” JSME International Journal Series B Fluids Thermal Engineering, vol. 49, no. 4, pp. 1233–1240, 2006. doi:10.1299/jsmeb.49.1233.
  • H. Hassan, and S. Harmand, “3D transient model of vapour chamber: Effect of nanofluids on its performance,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 1191–1201, 2013. doi:10.1016/j.applthermaleng.2012.10.047.
  • G. Carbajal, C. B. Sobhan, G. P. Peterson, D. T. Queheillalt, and H. N. G. Wadley, “A quasi-3D analysis of the thermal performance of a flat heat pipe,” Int. J. Heat Mass Transfer, vol. 50, no. 21–22, pp. 4286–4296, 2007. doi:10.1016/j.ijheatmasstransfer.2007.01.057.
  • Y.-S. Chen, et al. “Numerical simulation of a heat sink embedded with a vapor chamber and calculation of effective thermal conductivity of a vapor chamber,” Appl. Therm. Eng., vol. 29, no. 13, pp. 2655–2664, 2009. doi:10.1016/j.applthermaleng.2008.12.009.
  • S. Kalahasti, and Y. Joshi, 2002, “Performance characterization of a novel flat plate micro heat pipe spreader,” IEEE Transactions on Components Packaging, and Manufacturing Technology, vol. 25, no. 4, pp. 554–560. doi:10.1109/TCAPT.2002.808006.
  • U. Vadakkan, S. V. Garimella, and J. Y. Murthy, “Transport in flat heat pipes at high heat fluxes from multiple discrete sources,” J. Heat Transfer, vol. 126, no. 3, pp. 347–354, 2004. doi:10.1115/1.1737773.
  • Y. Koito, H. Imura, M. Mochizuki, Y. Saito, and S. Torii, “Numerical analysis on thermal transport phenomena in plate-type heat pipes,” Asian Pacific Confederation of Chemical Engineering Congress Program Abstracts, the Society of Chemical Engineering, vol. 31, no. 6, pp. 335–344, 2004.
  • H. Hassan, and S. Harmand, “A Three- dimensional study of electronic component cooling using a flat heat pipe,” Heat Transfer Eng., vol. 34, no. 7, pp. 596–607, 2013. doi:10.1080/01457632.2013.730426.
  • N. Kim, and S. Kim, “Self-Convectional three-dimensional integrated circuit cooling system using micro flat heat pipe for portable devices,” Heat Transfer Eng., vol. 35, no.10, pp. 924–932, 2013. doi:10.1080/01457632.2014.859514.
  • H. Hassan, and S. Harmand, “An experimental and numerical study on the effects of the flat heat pipe wick structure on its thermal performance,” Heat Transfer Eng., vol. 36, no. 3, pp. 278–289, 2015. doi:10.1080/01457632.2014.916157.
  • C. Omur, A. B. Uygur, and I. Horuz, “The effect of manufacturing limitations on groove design and its implementation to an algorithm for determining heat transport capability of heat pipes,” J. Therm. Sci. Technol., vol. 37, no. 1, pp. 159–170, 2017.
  • Cooler master Available from http://www.coolermaster.com/cooling/cpu-air-cooler/v8-gts/, accessed October 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.