215
Views
3
CrossRef citations to date
0
Altmetric
Articles

Laminar Free Convection in Power-law Fluids in a Right Angle Triangular Duct with Heated Base

, , &

References

  • S. Ostrach, “Natural convection in enclosures,” Adv. Heat Transf., vol. 8, pp. 161–227, 1972. doi:10.1016/S0065-2717(08)70039-X.
  • S. Ostrach, “Natural convection heat transfer in cavities and cells,” Proceedings of the 7th International Heat Transfer Conference, Munich, Germany, vol. 1, pp. 365–379, 1982.
  • O. M. Kamiyo et al., “A comprehensive review of natural convection in triangular enclosures,” Appl. Mech. Rev., vol. 63, no. 6, pp. 060801 -1-13, 2011.
  • D. Das, M. Roy, and T. Basak, “Studies on natural convection within enclosures of various (non-square) shapes – A review,” Int. J. Heat Mass Transf., vol. 106, pp. 356–406, 2017. doi:10.1016/j.ijheatmasstransfer.2016.08.034.
  • E. M. Del Campo, M. Sen, and E. Ramos, “Analysis of laminar natural convection in triangular enclosure,” Numer. Heat Transf., vol. 13, no. 3, pp. 353–372, 1988.
  • R. P. Chhabra, and J. F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed., Butterworth-Heinemann, Oxford, UK, 2008.
  • R. P. Chhabra, Bubbles, Drops, and Particles in Non-Newtonian Fluids, 2nd ed., CRC Press, Boca Raton, FL, 2006.
  • L. L. Schramm, Emulsions, Foams, Suspensions, and Aerosols: Microscience and Applications, 2nd ed., Wiley-VCH, New York, 2014.
  • V. A. Akinsete, and T. A. Coleman, “Heat transfer by steady laminar free convection in triangular enclosures,” Int. J. Heat Mass Transf., vol. 25, no. 7, pp. 991–998, 1982. doi:10.1016/0017-9310(82)90074-6.
  • H. Salmun, “Convection patterns in a triangular domain,” Int. J. Heat Mass Transf., vol. 38, no. 2, pp. 351–362, 1995. doi:10.1016/0017-9310(95)90029-2.
  • G. A. Holtzman, R. W. Hill, and K. S. Ball, “Laminar natural convection in isosceles triangular enclosures heated from below and symmetrically cooled from above,” J. Heat Transf., vol. 122, no. 3, pp. 485–491, 2000. doi:10.1115/1.1288707.
  • H. Asan, and L. Namli, “Laminar natural convection in a pitched roof of triangular cross-section: Summer day boundary conditions,” Energ. Buildings, vol. 33, no. 1, pp. 69–73, 2000. doi:10.1016/S0378-7788(00)00066-9.
  • S. C. Tzeng, J. H. Liou, and R. Y. Jou, “Numerical simulation-aided parametric analysis of natural convection in a roof of triangular enclosures,” Heat Transf. Eng., vol. 26, no. 8, pp. 69–79, 2005. doi:10.1080/01457630591003899.
  • Y. Varol, A. Koca, and H. F. Oztop, “Natural convection in a triangle enclosure with flush mounted heater on the wall,” Int. Commun. Heat Mass Transf., vol. 33, no. 8, pp. 951–958, 2006. doi:10.1016/j.icheatmasstransfer.2006.05.003.
  • A. Koca, H. F. Oztop, and Y. Varol, “The effects of Prandtl number on natural convection in triangular enclosures with localized heating from below,” Int. Commun. Heat Mass Transf., vol. 34, no. 4, pp. 511–519, 2007. doi:10.1016/j.icheatmasstransfer.2007.01.006.
  • E. F. Kent, “Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls,” Mech. Res. Commun., vol. 36, no. 4, pp. 497–508, 2009. doi:10.1016/j.mechrescom.2008.11.002.
  • T. Basak, G. Aravind, and S. Roy, “Visualization of heat flow due to natural convection within triangular cavities using Bejan's heatline concept,” Int. J. Heat Mass Transf., vol. 52, no. 11–12, pp. 2824–2833, 2009. doi:10.1016/j.ijheatmasstransfer.2008.10.034.
  • S. C. Saha, “Unsteady natural convection in a triangular enclosure under isothermal heating,” Energ. Buildings, vol. 43, no. 2–3, pp. 695–703, 2011. doi:10.1016/j.enbuild.2010.11.014.
  • O. Turan, R. J. Poole, and N. Chakraborty, “Boundary condition effects on natural convection of Bingham fluids in a square enclosure with differentially heated horizontal walls,” Comput. Thermal Sci., vol. 4, no. 1, pp. 77–97, 2012. doi:10.1615/ComputThermalScien.2012004759.
  • O. Turan, N. Chakraborty, and R. J. Poole “Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls,” J. Non-Newt. Fluid Mech., vol. 165, no. 15–16, pp. 901–913, 2010. doi:10.1016/j.jnnfm.2010.04.013.
  • O. Turan, R. J. Poole, and N. Chakraborty, “Aspect ratio effects in laminar natural convection of Bingham fluids in rectangular enclosures with differentially heated side walls,” J. Non-Newt. Fluid Mech., vol. 166, no. 3–4, pp. 208–230, 2011. doi:10.1016/j.jnnfm.2010.12.002.
  • O. Turan, A. Sachdeva, N. Chakraborty, and R. J. Poole, “Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures,” J. Non-Newt. Fluid Mech., vol. 166, no. 17–18, pp. 1049–1063, 2011. doi:10.1016/j.jnnfm.2011.06.003.
  • A. K. De, and A. Dalal, “A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure,” Int. J. Heat Mass Transf., vol. 49, no. 23–24, pp. 4608–4623, 2006.
  • K. Sasaguchi, K. Kuwabara, K. Kusano, and H. Kitagawa, “Transient cooling of water around a cylinder in a rectangular cavity-a numerical analysis of the effect of the position of the cylinder,” Int. J. Heat Mass Transf., vol. 41, no. 20, pp. 3149–3156, 1998. doi:10.1016/S0017-9310(98)00064-7.
  • R. Shyam, M. Sairamu, N. Nirmalkar, and R. P. Chhabra, “Free convection from a heated circular cylinder in confined power-law fluids,” Int. J. Therm. Sci., vol. 74, pp. 156–173, 2013. doi:10.1016/j.ijthermalsci.2013.06.005.
  • M. Sairamu, N. Nirmalkar, and R. P. Chhabra, “Natural convection from a circular cylinder in confined Bingham plastic fluids,” Int. J. Heat Mass Transf., vol. 60, pp. 567–581, 2013. doi:10.1016/j.ijheatmasstransfer.2013.01.024.
  • Y. G. Park, H. S. Yoon, and M. Y. Ha, “Natural convection in square enclosure with hot and cold cylinders at different vertical locations,” Int. J. Heat Mass Transf., vol. 55, no. 25–26, pp. 7911–7925, 2012. doi:10.1016/j.ijheatmasstransfer.2012.08.012.
  • H. S. Yoon, Y. G. Park, and J. H. Jung, “Natural convection in a square enclosure with differentially heated two horizontal cylinders,” Numer. Heat Transf. A, vol. 65, no. 4, pp. 302–326, 2014. doi:10.1080/10407782.2013.831679.
  • A. K. Baranwal, and R. P. Chhabra, “Free convection in confined power-law fluids from two side-by-side cylinders in a square enclosure,” Heat Transf. Eng., vol. 37, no. 18, pp. 1521–1537, 2016. doi:10.1080/01457632.2016.1151296.
  • L. Mishra, and R. P. Chhabra, “Natural convection in power-law fluids in a square enclosure from two differentially heated horizontal cylinders,” Heat Transf. Eng., vol. 39, no. 10, 2018 (in press). doi: 10.1080/01457632.2017.1338856.
  • GH. R. Kefayati, “Simulation of Non-Newtonian molten polymer on natural convection in a sinusoidal heated cavity using FDLBM,” J. Mol. Liq., vol. 195, pp. 165–174, 2014. doi:10.1016/j.molliq.2014.02.031.
  • GH. R. Kefayati, “Mesoscopic simulation of double-diffusive mixed convection of pseudoplastic fluids in an enclosure with sinusoidal boundary,” Comput. Fluids, vol. 97, pp. 94–109, 2014. doi:10.1016/j.compfluid.2014.04.007.
  • GH. R. Kefayati, “Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity,” Chem. Eng. Res. Des., vol. 94, pp. 337–354, 2015. doi:10.1016/j.cherd.2014.08.014.
  • GH. R. Kefayati, “FDLBM simulation of entropy generation in double diffusive natural convection of power-law fluids in an enclosure with Soret and Dufour effects,” Int. J. Heat Mass Transf., vol. 89, pp. 267–290, 2015. doi:10.1016/j.ijheatmasstransfer.2015.05.058.
  • R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2002.
  • A. Acrivos, “A theoretical analysis of laminar natural convection heat transfer to non-Newtonian fluids,” AIChE J., vol. 6, no. 4, pp. 584–590, 1960. doi:10.1002/aic.690060416.
  • K. Ishibashi, A. Yamanaka, and N. Mitsuishi, “Heat transfer in agitated vessels with special types of impellers,” J. Chem. Eng. Jpn., vol. 12, no. 3, pp. 230–235, 1979. doi:10.1252/jcej.12.230.
  • W. S. Amato, and C. Tien, “Free convection heat transfer from isothermal spheres in polymer solutions,” Int. J. Heat Mass Transf., vol. 19, no. 11, pp. 1257–1266, 1976. doi:10.1016/0017-9310(76)90077-6.
  • COMSOL Multiphysics User Guide, Version 4.3 a, COMSOL, AB: Oct. 1, 2012.
  • S. Kimura, and A. Bejan, “The “heatline” visualization of convective heat transfer,” J. Heat Transf., vol. 105, no. 4, pp. 913–919, 1983. doi:10.1115/1.3245684.
  • A. Bejan, Convection Heat Transfer, 2nd ed., Wiley, Hoboken, NJ, 1995.
  • T. Basak, D. Das, and P. Biswal, “Heatlines: Modeling, visualization, mixing and thermal management,” Prog. Energ. Combust., vol. 64, pp. 157–218, 2018. doi:10.1016/j.pecs.2017.08.003.
  • V. A. Costa, “Bejan's heatlines and masslines for convection visualization and analysis,” Appl. Mech. Rev., vol. 59, no. 3, pp. 126–145, 2006. doi:10.1115/1.2177684.
  • Q. H. Deng, and G. F. Tang, “Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline,” Int. J. Heat Mass Transf., vol. 45, no. 11, pp. 2373–2385, 2002. doi:10.1016/S0017-9310(01)00316-7.
  • A. Bejan, “Entropy generation minimization: The new thermodynamics of finite‐size devices and finite‐time processes,” J. Appl. Phys., vol. 79, no. 3, pp. 1191–1218, 1996. doi:10.1063/1.362674.
  • A. Bejan, Entropy Generation through Heat and Fluid Flow, Wiley, Hoboken, NJ, 1982.
  • P. Biswal, and T. Basak, “Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review,” Renew. Sust. Energ. Rev., vol. 80, pp. 1412–1457, 2017. doi:10.1016/j.rser.2017.04.070.
  • Y. Varol, H. F. Oztop, and A. Koca, “Entropy production due to free convection in partially heated isosceles triangular enclosures,” Appl. Therm. Eng., vol. 28, no. 11–12, pp. 1502–1513, 2008. doi:10.1016/j.applthermaleng.2007.08.013.
  • A. Bejan, Advanced Engineering Thermodynamics, 4th ed., Wiley, Hoboken, NJ, USA, 2016.
  • G. G. Ilis, M. Mobedi, and B. Sunden, “Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls,” Int. Commun. Heat Mass Transf., vol. 35, no. 6, pp. 696–703, 2008. doi:10.1016/j.icheatmasstransfer.2008.02.002.
  • A. Prhashanna, and R. P. Chhabra, “Free convection in power-law fluids from a heated sphere,” Chem. Eng. Sci., vol. 65, no. 23, pp. 6190–6205, 2010. doi:10.1016/j.ces.2010.09.003.
  • A. Prhashanna, and R. P. Chhabra, “Laminar natural convection from a horizontal cylinder in power-law fluids,” Ind. Eng. Chem. Res., vol. 50, no. 4, pp. 2424–2440, 2011. doi:10.1021/ie101938p.
  • A. K. Gupta, C. Sasmal, M. Sairamu, and R. P. Chhabra, “Laminar and steady free convection in power-law fluids from a heated spheroidal particle: A numerical study,” Int. J. Heat Mass Transf., vol. 75, pp. 592–609, 2014. doi:10.1016/j.ijheatmasstransfer.2014.04.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.