294
Views
15
CrossRef citations to date
0
Altmetric
Articles

Impact of Phase Change Material's Thermal Properties on the Thermal Performance of Phase Change Material Hollow Block Wall

&

References

  • M. Ahmed, O. Meade, and M. A. Medina, “Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials,” Energy Convers. Manage., vol. 51, no. 3, pp. 383–392, 2010.
  • H. J. Alqallaf, and E. M. Alawadhi, “Concrete roof with cylindrical holes containing PCM to reduce the heat gain,” Energy Build., vol. 61, pp. 73–80, 2013.
  • A. Bontemps, M. Ahmad, K. Johannes, and H. Sallee, “Experimental and modelling study of twin cells with latent heat storage walls,” Energy Build., vol. 43, no. 9, pp. 2456–2461, 2011.
  • A. M. Borreguero, M. Luz Sánchez, J. L. Valverde, M. Carmona, and J. F. Rodríguez, “Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content,” Appl. Energy, vol. 88, no. 3, pp. 930–937, 2011.
  • L. F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, and O. Zubillaga, “Use of microencapsulated PCM in concrete walls for energy savings,” Energy Build., vol. 39, no. 2, pp. 113–119, 2007.
  • A. Castell, I. Martorell, M. Medrano, G. Perez, and L. F. Cabeza, “Experimental study of using PCM in brick constructive solutions for passive cooling,” Energy Build., vol. 42, no. 4, pp. 534–540, 2010.
  • R. Cheng, X. Wang, and Y. P. Zhang, “Energy-efficient building envelopes with phase-change materials: new understanding and related research,” Heat Transfer Eng., vol. 35, no. 11–12, pp. 970–984, 2014.
  • X. Xiao, and P. Zhang, “Experimental investigation on heat storage/retrieval characteristics of a latent heat storage system,” Heat Transfer Eng., vol. 35, no. 11–12, pp. 1084–1097, 2014.
  • E. M. Alawadhi, “Thermal insulation for a pipe using phase change material,” Heat Transfer Eng., vol. 26, no. 8, pp. 32–40, 2005.
  • E. M. Alawadhi, “Thermal analysis of a pipe insulation with a phase change material: Material selection and sizing,” Heat Transfer Eng., vol. 29, no. 7, pp. 624–631, 2008. doi:10.1080/01457630801922469.
  • A. de Gracia, and L. F. Cabeza, “Phase change materials and thermal energy storage for buildings,” Energy Build., vol. 103, pp. 414–419, 2015. doi:10.1016/j.enbuild.2015.06.007.
  • Y. Quanying, H. Ran, and L. Lisha, “Experimental study on the thermal properties of the phase change material wall formed by different methods,” Sol. Energy, vol. 86, no. 10, pp. 3099–3102, 2012. doi:10.1016/j.solener.2012.07.022.
  • P. Principi, and R. Fioretti, “Thermal analysis of the application of pcm and low emissivity coating in hollow bricks,” Energy Build., vol. 51, pp. 131–142, 2012. doi:10.1016/j.enbuild.2012.04.022.
  • J. W. Lei, J. L. Yang, and E. H. Yang, “Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore,” Appl. Energy, vol. 162, pp. 207–217, 2016. doi:10.1016/j.apenergy.2015.10.031.
  • M. A. Medina, J. B. King, and M. Zhang, “On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs),” Energy, vol. 33, no. 4, pp. 667–678, 2008. doi:10.1016/j.energy.2007.11.003.
  • A. M. Thiele, G. Sant, and L. Pilon, “Diurnal thermal analysis of microencapsulated PCM-concrete composite walls,” Energy Convers. Manage., vol. 93, pp. 215–227, 2015. doi:10.1016/j.enconman.2014.12.078.
  • X. Kong, S. Lu, J. Huang, Z. Cai, and S. Wei, “Experimental research on the use of phase change materials in perforated brick rooms for cooling storage,” Energy Build., vol. 62, pp. 597–604, 2013. doi:10.1016/j.enbuild.2013.03.048.
  • D. Li, Y. M. Zheng, C. Y. Liu, and G. Z. Wu, “Numerical analysis on thermal performance of roof contained PCM of a single residential building,” Energy Convers. Manage., vol. 100, pp. 147–156, 2015. doi:10.1016/j.enconman.2015.05.014.
  • G. Selka, A. I. N. Korti, and S. Abboudi, “Dynamic thermal behaviour of building using phase change materials for latent heat storage,” Thermal. Sci., vol. 19, pp. S603–S613, 2015. doi:10.2298/TSCI140311134S.
  • X. Jin, M. A. Medina, and X. Zhang, “On the importance of the location of PCMs in building walls for enhanced thermal performance,” Appl. Energy, vol. 106, pp. 72–78, 2013. doi:10.1016/j.apenergy.2012.12.079.
  • P. C. Tabares-Velasco, C. Christensen, and M. Bianchi, “Verification and validation of EnergyPlus phase change material model for opaque wall assemblies,” Build. Environ., vol. 54, pp. 186–196, 2012. doi:10.1016/j.buildenv.2012.02.019.
  • T. Silva, R. Vicente, N. Soares, and V. Ferreira, “Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution,” Energy Build., vol. 49, pp. 235–245, 2012. doi:10.1016/j.enbuild.2012.02.010.
  • E. Meng, H. Yu, G. Zhan, and Y. He, “Experimental and numerical study of the thermal performance of a new type of phase change material room,” Energy Convers. Manage., vol. 74, pp. 386–394, 2013. doi:10.1016/j.enconman.2013.06.004.
  • Y. Zhang, K. Du, J. He, L. Yang, Y. Li, and S. Li, “Impact factors analysis on the thermal performance of hollow block wall,” Energy Build., vol. 75, pp. 330–341, 2014. doi:10.1016/j.enbuild.2014.02.037.
  • Y. Zhang, and J. He, “Impact of the relationship between phase change temperature and boundary temperature on the thermal performance of PCM wall and the presentation of PCM thermal performance indexes,” Heat Transfer Asian Res., vol. 45, no. 4, pp. 379–403, 2016. doi:10.1002/htj.21220.
  • T. Hatakeyama, M. Ishizuka, “Thermal analysis for package cooling technology using phase- change material by using thermal network analysis and CFD analysis with enthalpy porosity method,” Heat Transfer Eng., vol. 35, no. 14–15, pp. 1227–1234, 2014. doi:10.1080/01457632.2013.876340.
  • S. L. Liu, Y. C. Li, Y. Q. Zhang, “Review on heat transfer mechanisms and characteristics in encapsulated PCMs,” Heat Transfer Eng., vol. 36, no. 10, pp. 880–901, 2015. doi:10.1080/01457632.2015.965093.
  • Y. Zhang, K. Du, J. He, L. Yang, and Y. Li, “Impact factors analysis of the enthalpy method and the effective heat capacity method on the transient nonlinear heat transfer in phase change materials (PCMs),” Numerical Heat Transfer, Part A-Applications, vol. 65, no. 1, pp. 66–83, 2014. doi:10.1080/10407782.2013.811153.
  • Y. Zhang, K. Du, M. A. Medina, and J. P. He, “An experimental method for validating transient heat transfer mathematical models used for phase change materials (PCMs) calculations,” Phase Transit., vol. 87, no. 6, pp. 541–558, 2014. doi:10.1080/01411594.2014.885522.
  • Y. Zhang, S. Zhuang, Q. Wang, and J. He, “Experimental research on the thermal performance of composite PCM hollow block walls and validation of phase transition heat transfer models,” Adv. Mater. Sci. Eng., pp. 6359414, 2016.
  • X. Jin, X. Zhang, Y. Cao, and G. Wang, “Thermal performance evaluation of the wall using heat flux time lag and decrement factor,” Energy Build., vol. 47, pp. 369–374, 2012. doi:10.1016/j.enbuild.2011.12.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.