134
Views
0
CrossRef citations to date
0
Altmetric
Articles

Simulation of Mixed Convection in Eccentric Annulus: A Combined Lattice Boltzmann and Smoothed Profile Approach

, &

References

  • H. K. Dawood, H. A. Mohammed, N. A. C. Sidik, K. M. Munisamy, and M. A. Wahid, "Forced, natural and mixed-convection heat transfer and fluid flow in annulus: A review," Int. Commun. Heat Mass Transfer, vol. 62, pp. 45–57, 2015. doi:10.1016/j.icheatmasstransfer.2015.01.006.
  • J. Dirker, and Meyer, P, "Convective Heat Transfer Coefficients in Concentric Annuli," Heat Transfer Eng., Vol. 26, no. 2, pp. 38–44, 2005. doi:10.1080/01457630590897097.
  • T. Kuehn, and R. Goldstein, "An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders," J. Fluid Mech., vol. 74, no. 4, pp. 695–719, 1976. doi:10.1017/S0022112076002012.
  • T. Kuehn, and R. Goldstein, "An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli," J. Heat Transfer, vol. 100, no.4, pp. 635–640, 1978. doi:10.1115/1.3450869.
  • T. Kuehn, and R. Goldstein, "A parametric study of Prandtl number and diameter ratio effects on natural convection heat transfer in horizontal cylindrical annuli," J. Heat Transfer, vol. 102, no. 4, pp. 768–770, 1978. doi:10.1115/1.3244388.
  • G. Guj, and F. Stella, "Natural convection in horizontal eccentric annuli: numerical study," Numerical Heat Transfer, Part A, vol. 27, no. 1, pp. 89–105, 1995. doi:10.1080/10407789508913690.
  • F. Shahraki, "Modeling of buoyancy-driven flow and heat transfer for air in a horizontal annulus: effects of vertical eccentricity and temperature-dependent properties," Numerical Heat Transfer, Part A, vol. 42, no. 6, pp. 603–621, 2002. doi:10.1080/10407780290059729.
  • b. Shiniyan, R. Hosseini, and H. Naderan, "Numerical study on flow and thermal fields of mixed convection in a concentric inclined annulus," Heat Transfer Eng., Vol. 37, no. 9, pp. 751–762, 2016. doi:10.1080/01457632.2015.1080557.
  • E. Abu-Nada, "Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection," Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 679–690, 2009. doi:10.1016/j.ijheatfluidflow.2009.02.003.
  • E. Abu-Nada, "Effects of variable viscosity and thermal conductivity of CuO-water nanofluid on heat transfer enhancement in natural convection: mathematical model and simulation," J. Heat Transfer, vol. 132, no. 5, p. 052401-1–052401–9, 2010. doi:10.1115/1.4000440.
  • E. Abu-Nada, Z. Masoud, and A. Hijazi, "Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids," Int. Commun. Heat Mass Transfer, vol. 35, no. 5, pp. 657–665, 2008. doi:10.1016/j.icheatmasstransfer.2007.11.004.
  • M. Habibi Matin, and I. Pop, "Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid," Int. J. Heat Mass Transfer, vol. 61, pp. 353–364, 2013. doi:10.1016/j.ijheatmasstransfer.2013.01.061.
  • M. Habibi Matin, and I. Pop, "Numerical Study of Mixed Convection Heat Transfer of a Nanofluid in an Eccentric Annulus," Numerical Heat Transfer, Part A, vol. 65, no.1, pp. 84–105, 2014. doi:10.1080/10407782.2013.812000.
  • C. C. Liao, and C. A. Lin, "Mixed Convection of a Heated Rotating Cylinder in a Square Enclosure," Int. J. Heat Mass Transfer, vol. 72, pp. 9–22, 2014. doi:10.1016/j.ijheatmasstransfer.2013.12.081.
  • S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford, UK: Oxford University Press, 2001.
  • Z. Guo, and C. Shu, Lattice Boltzmann method and its applications in engineering. Singapore: World Scientific Publishing Company, 2013.
  • C. K. Aidun, and J. R. Clausen, "Lattice-Boltzmann Method for Complex Flows," Annu. Rev. Fluid Mech., vol. 42, pp.439–472, 2010. doi:10.1146/annurev-fluid-121108-145519.
  • X. He, S. Chen, and G. D. Doolen, "A novel thermal model for the lattice Boltzmann method in incompressible limit," J. Comput. Phys., vol. 146, no.1, pp. 282–300, 1998. doi:10.1006/jcph.1998.6057.
  • X. Shan, "Simulation of Rayleigh-Benard convection using a lattice Boltzmann method," Phys. Rev. E, vol. 55, no. 3, pp. 2780–2788, 1997. doi:10.1103/PhysRevE.55.2780.
  • Y. Wei, H. S. Doua, Z. Wang, Y. Qianb, and W. Yan, "Simulations of natural convection heat transfer in an enclosure at different Rayleigh number using lattice Boltzmann method," Comput. Fluids, vol. 124, pp.30–38, 2016. doi:10.1016/j.compfluid.2015.09.004.
  • Y. Peng, Y. T. Chew, and C. Shu, "Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the Taylor series expansion and least square based lattice Boltzmann method," Phys. Rev. E, vol. 67, no.2, p. 026701-1–026701-6, 2003. doi:10.1103/PhysRevE.67.026701.
  • S. M. Dash, T. S.. Lee, and H. Huang, "Natural convection from an eccentric square cylinder using a novel flexible forcing IB-LBM method," Numer. Heat Transf. Part A, vol. 65, no.6, pp. 531–555, 2014. doi:10.1080/10407782.2013.836019.
  • T. Seta, "Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection," Phys. Rev. E, vol. 87, no. 6, p. 063304-1–063304-16, 2013. doi:10.1103/PhysRevE.87.063304.
  • Y. Shi, T. S. Zhao, and Z. L. Guo, "Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus," Comput. Fluids, vol. 35, no. 1, pp.1–15, 2006. doi:10.1016/j.compfluid.2004.11.003.
  • Z. L. Guo, C. Zheng, and B. C. Shi, "An extrapolation method for boundary conditions in lattice Boltzmann method," Phys. Fluids, vol. 14, no. 6, pp. 2007–2010, 2002. doi:10.1063/1.1471914.
  • E. Fattahi, M. Farhadi, and K. Sedighi, "Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus," Int. J. Therm. Sci., vol. 49, no. 12, pp. 2353–2362, 2010. doi:10.1016/j.ijthermalsci.2010.07.014.
  • E. Fattahi, M. Farhadi, and K. Sedighi, "Lattice Boltzmann simulation of mixed convection heat transfer in eccentric annulus," Int. Commun. Heat Mass Transfer, vol. 38, no. 8, pp. 1135–1141, 2011. doi:10.1016/j.icheatmasstransfer.2011.05.004.
  • C. S. Peskin, "Flow patterns around heart valves: A numerical method.," J. Comput. Phys., vol. 10, no. 2, pp. 252–271, 1972. doi:10.1016/0021-9991(72)90065-4.
  • Z. G. Feng, and E. E. Michaelides, "A direct forcing method in the simulations of particulate flows," J. Comput. Phys., vol. 202, no. 1, pp. 20–51, 2005. doi:10.1016/j.jcp.2004.06.020.
  • X. D. Niu, C. Shu, Y. T. Chew, and Y. Peng, "A momentum exchange based immersed boundary lattice Boltzmann method for simulating incompressible viscous flows," Phys. Lett. A, vol. 354, no. 3, pp. 173–182, 2006. doi:10.1016/j.physleta.2006.01.060.
  • H. K. Jeong, H. S. Yoon, M. Y. Ha, and M. Tsutahara, "An immersed boundary-thermal lattice Boltzmann method using an equilibrium internal energy density approach for the simulation of flows with heat transfer," J. Comput. Phys., vol. 229, no. 7, pp. 2526–2543, 2010. doi:10.1016/j.jcp.2009.12.002.
  • S. Jafari, R. Yamamoto, and M. Rahnama, "Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions," Phys. Rev. E, vol. 83, no. 2, pp. 026702-1–026702-7, 2011. doi:10.1103/PhysRevE.83.026702.
  • Y. Nakayama, and R. Yamamoto, "Simulation method to resolve hydrodynamic interactions in colloidal dispersions," Phys. Rev. E, vol. 73, no. 3, p. 036707- 1–036707–7, 2005.
  • Y. Hu, D. Li, S. Shu, and X. Niu, "An efficient smoothed profile-lattice Boltzmann method for the simulation of forced and natural convection flows in complex geometries," Int. Commun. Heat Mass Transfer, vol. 68, pp. 188–199, 2015. doi:10.1016/j.icheatmasstransfer.2015.05.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.