3,018
Views
31
CrossRef citations to date
0
Altmetric
Articles

Thermo-Hydraulic Performance Enhancement of Finned Elliptical Tube Heat Exchangers by Utilizing Innovative Dimple Turbulators

&

References

  • D. E. Newton, World Energy Crisis: A Reference Handbook. Santa Barbara, CA: ABC-CLIO, 2013.
  • R. L. Webb, Principles of Enhanced Heat Transfer. New York: John Wiley & Sons, 1994.
  • R. L. Webb, “Air-side heat transfer in finned tube heat exchangers,” Heat Transf. Eng., vol. 1, no. 3, pp. 33–49, 1980. DOI: 10.1080/01457638008939561.
  • L. A. O. Rocha, F. E. M. Saboya, and J. V. C. Vargas, “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers,” Int. J. Heat Fluid Flow, vol. 18, no. 2, pp. 247–252, 1997. DOI: 10.1016/S0142-727X(96)00063-X.
  • A. Hasan, and K. Siren, “Performance investigation of plain circular and oval tube evaporative cooled heat exchangers,” Appl. Thermal Eng., vol. 24, no. 5–6, pp. 777–790, 2004. DOI: 10.1016/j.applthermaleng.2003.10.022.
  • R. K. Shah, and R. L. Webb, “Compact and enhanced heat exchangers,” in Heat Exchangers: Theory and Practice, J. Taborek, G. F. Hewitt, and N. Afgan, Eds. Washington DC, USA: Hemisphere/McGraw-Hill, 1983, pp. 425–468.
  • A. M. Jacobi, and R. K. Shah, “Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress,” Exp. Therm. Fluid Sci., vol. 11, no. 3, pp. 295–309, 1995. DOI: 10.1016/0894-1777(95)00066-U.
  • L.-H. Tang, S.-C. Tan, P.-Z. Gao, and M. Zeng, “Parameters optimization of fin-and-tube heat exchanger with a novel vortex generator fin by Taguchi method,” Heat Transf. Eng., vol. 37, no. 3–4, pp. 369–381, 2016. DOI: 10.1080/01457632.2015.1052715.
  • B. Lotfi, M. Zeng, B. Sundén, and Q. Wang, “3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators,” Energy, vol. 73, pp. 233–257, 2014. DOI: 10.1016/j.energy.2014.06.016.
  • B. Lotfi, M. Zeng, B. Sundén, and Q. Wang, “Thermo-hydraulic characterization of the smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators,” Energy Procedia, vol. 61, pp. 2343–2346, 2014. DOI: 10.1016/j.egypro.2014.11.1199.
  • B. Lotfi, B. Sundén, and Q. Wang, “An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators,” Appl. Energy, vol. 162, pp. 1282–1302, Jan. 2016. DOI: 10.1016/j.apenergy.2015.07.065.
  • B. Lotfi, B. Sundén, and Q. Wang, “3D fluid-structure interaction (FSI) simulation of new type vortex generators in smooth wavy fin-and-elliptical tube heat exchanger,” Eng. Computations, vol. 33, no. 8, pp. 2504–2529, 2016. DOI: 10.1108/EC-04-2015-0091.
  • S. Mao, N. Love, A. Leanos, and G. Rodriguez-Melo, “Correlation studies of hydrodynamics and heat transfer in metal foam heat exchangers,” Appl. Thermal Eng., vol. 71, no. 1, pp. 104–118, 2014. DOI: 10.1016/j.applthermaleng.2014.06.035.
  • R. A. Mahdi, H. A. Mohammed, K. M. Munisamy, and N. H. Saeid, “Review of convection heat transfer and fluid flow in porous media with nanofluid,” Renew Sust. Energy Rev., vol. 41, pp. 715–734, Jan. 2015. DOI: 10.1016/j.rser.2014.08.040.
  • G. I. Mahmood et al., “Local heat transfer and flow structure on and above a dimpled surface in a channel,” J. Turbomach., vol. 123, no. 1, pp. 115–123, 2001. DOI: 10.1115/1.1333694.
  • G. I. Mahmood, and P. M. Ligrani, “Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure,” Int. J. Heat Mass Transf., vol. 45, no. 10, pp. 2011–2020, 2002. DOI: 10.1016/S0017-9310(01)00314-3.
  • A. Dixit, and A. K. Patil, “Heat transfer characteristics of grooved fin under forced convection,” Heat Transf. Eng., vol. 36, no. 16, pp. 1409–1416, 2015. DOI: 10.1080/01457632.2015.1003726.
  • M. R. Maschmann, and H. B. Ma, “An investigation of capillary flow effect on condensation heat transfer on a grooved plate,” Heat Transf. Eng., vol. 27, no. 3, pp. 22–31, 2006. DOI: 10.1080/01457630500454939.
  • C. O. Olsson, and B. Sundén, “Thermal and hydraulic performance of a rectangular duct with multiple V-shaped ribs,” ASME J. Heat Transf., vol. 120, no. 4, pp. 1072–1077, 1998. DOI: 10.1115/1.2825892.
  • P. Promvonge, T. Chompookham, S. Kwankaomeng, and C. Thianpong, “Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators,” Energy Convers. Manage., vol. 51, no. 6, pp. 1242–1249, 2010. DOI: 10.1016/j.enconman.2009.12.035.
  • M. A. Elyyan, A. Rozati, and D. K. Tafti, “Investigation of dimpled fins for heat transfer enhancement in compact heat exchangers,” Int. J. Heat Mass Transf., vol. 51, no. 11-12, pp. 2950–2966, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.09.013.
  • J. F. Fan, W. K. Ding, Y. L. He, and W. Q. Tao, “Three-dimensional numerical study of fluid and heat transfer characteristics of dimpled fin surfaces,” Numer. Heat Transf., Part A: Appl., vol. 62, no. 4, pp. 271–294, 2012. DOI: 10.1080/10407782.2012.666931.
  • J.-C. Han, “Recent studies in turbine blade cooling,” Int. J. Rotating Mach., vol. 10, no. 6, pp. 443–457, 2004. DOI: 10.1155/S1023621X04000442.
  • J.-C. Han, “Fundamental gas turbine heat transfer,” J. Therm. Sci. Eng. Appl., vol. 5, no. 2, pp. TSEA-12-1176, 2013.
  • A. Kumar, J. L. Bhagoria, and R. M. Sarviya, “Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs,” Energy Convers. Manage., vol. 50, no. 8, pp. 2106–2117, 2009. DOI: 10.1016/j.enconman.2009.01.025.
  • T. Alam, R. P. Saini, and J. S. Saini, “Effect of circularity of perforation holes in V-shaped blockages on heat transfer and friction characteristics of rectangular solar air heater duct,” Energy Convers. Manage., vol. 86, pp. 952–963, Oct. 2014. DOI: 10.1016/j.enconman.2014.06.050.
  • S. W. Chang, S. F. Chiou, and S. F. Chang, “Heat transfer of impinging jet array over concave-dimpled surface with applications to cooling of electronic chipsets,” Exp. Thermal Fluid Sci., vol. 31, no. 7, pp. 625–640, 2007. DOI: 10.1016/j.expthermflusci.2006.06.008.
  • G.-L. Wang et al., “Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling,” Sensors, vol. 15, no. 4, pp. 9547–9562, 2015. DOI: 10.3390/s150409547.
  • R. J. Firth, and L. Meyer, “A comparison of the heat transfer and friction factor performance of four different types of artificially roughened surface,” Int. J. Heat Mass Transf., vol. 26, no. 2, pp. 175–183, 1983. DOI: 10.1016/S0017-9310(83)80024-6.
  • S. K. Sharma, and V. R. Kalamkar, “Thermo-hydraulic performance analysis of solar air heaters having artificial roughness – A review,” Renew. Sust. Energ. Rev., vol. 41, pp. 413–435, Jan. 2015. DOI: 10.1016/j.rser.2014.08.051.
  • P. M. Ligrani, M. M. Oliveira, and T. Blaskovich, “Comparison of heat transfer augmentation techniques,” AIAA J., vol. 41, no. 3, pp. 337–362, 2003. DOI: 10.2514/2.1964.
  • R. S. Snedeker, and C. D. Donaldson, “Observation of a bistable flow in a hemispherical cavity,” AIAA J., vol. 4, no. 4, pp. 735–736, 1966.
  • V. I. Terekhov, S. V. Kalinina, and Y. M. Mshvidobadze, “The effects of geometric and dynamic flow parameters on heat transfer in a spherical cavity,” Russian J. Eng. Thermophys., vol. 11, no. 2, pp. 153–166, 2002.
  • V. I. Terekhov, S. V. Kalinina, and Y. M. Mshvidobadze, “Heat transfer coefficient and aerodynamic resistance on a surface with a single dimple,” J. Enhanced Heat Transf., vol. 4, no. 2, pp. 131–145, 1997. DOI: 10.1615/JEnhHeatTransf.v4.i2.60.
  • V. N. Afanasyev, Ya, P. Chudnovsky, A. I. Leontiev, and P. S. Roganov, “Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate,” Exp. Thermal Fluid Sci., vol. 7, no. 1, pp. 1–8, 1993. DOI: 10.1016/0894-1777(93)90075-T.
  • M. S. Varun, and N. S. Thakur, “Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate,” Solar Energy, vol. 86, no. 9, pp. 2852–2861, 2012.
  • R. P. Saini, and J. Verma, “Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters,” Energy, vol. 33, no. 8, pp. 1277–1287, 2008. DOI: 10.1016/j.energy.2008.02.017.
  • C. Bi, G. H. Tang, and W. Q. Tao, “Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves,” Appl. Thermal Eng., vol. 55, no. 1-2, pp. 121–132, 2013. DOI: 10.1016/j.applthermaleng.2013.03.007.
  • G. N. Xie, B. Sundén, and W. H. Zhang, “Comparisons of pins/dimples/protrusions cooling concepts for an internal blade tip-wall at high Reynolds numbers,” ASME J. Heat Transf., vol. 133, no. 6, pp. 061902–0619029, 2011. DOI: 10.1115/1.4003558.
  • S. D. Hwang, H. G. Kown, and H. H. Cho, “Local heat transfer and thermal performance on periodically dimple–protrusion patterned walls for compact heat exchangers,” Energy, vol. 35, no. 12, pp. 5357–5364, 2010. DOI: 10.1016/j.energy.2010.07.022.
  • S. D. Hwang, H. G. Kown, and H. H. Cho, “Heat transfer with dimple/protrusion arrays in a rectangular duct with a low Reynolds number range,” Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 916–926, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.01.004.
  • P. M. Ligrani, J. L. Harrison, G. I. Mahmood, and M. L. Hill, “Flow structure due to dimple depressions on a channel surface,” Phys. Fluids, vol. 13, no. 11, pp. 3442–3451, 2001. DOI: 10.1063/1.1404139.
  • P. M. Ligrani, G. I. Mahmood, J. L. Harrison, C. M. Clayton, and D. L. Nelson, “Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls,” Int. J. Heat Mass Transf., vol. 44, no. 23, pp. 4413–4425, 2001. DOI: 10.1016/S0017-9310(01)00101-6.
  • P. M. Ligrani, N. K. Burgess, and S. Y. Won, “Nusselt numbers and flow structure on and above a shallow dimpled surface within a channel including effects of inlet turbulence intensity level,” J. Turbomach., vol. 127, no. 2, pp. 321–330, 2005. DOI: 10.1115/1.1861913.
  • J. Park, and P. M. Ligrani, “Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel,” Numer. Heat Transf., Part A: Appl., vol. 47, no. 3, pp. 209–232, 2005. DOI: 10.1080/10407780590886304.
  • H. Lienhart, M. Breuer, and C. Köksoy, “Drag reduction by dimples? – A complementary experimental/numerical investigation,” Int. J. Heat Fluid Flow, vol. 29, no. 3, pp. 783–791, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.02.001.
  • M. K. Chyu, Y. Yu, H. Ding, J. P. Downs, and F. O. Soechting, “Concavity enhanced heat transfer in an internal cooling passage,” ASME Int. Gas Turbine and Aeroengine Congr. and Exhibition. Orlando, FL, USA: ASME, p. 97-GT-437, June 2–5, 1997.
  • S. A. Isaev, A. I. Leont’ev, P. A. Baranov, K. T. Metov, and A. E. Usachov, “Numerical analysis of the effect of viscosity on the vortex dynamics in laminar separated flow past a dimple on a plane with allowance for its asymmetry,” J. Eng. Phys. Thermophys., vol. 74, no. 2, pp. 339–346, 2001. DOI: 10.1023/A:1016600404896.
  • S. A. Isaev, A. I. Leont’ev, K. T. Metov, and V. B. Kharchenko, “Modeling of the influence of viscosity on the tornado heat exchange in turbulent flow around a small hole on the plane,” J. Eng. Phys. Thermophys., vol. 75, no. 4, pp. 890–898, 2002. DOI: 10.1023/A:1020315118820.
  • S. A. Isaev, A. I. Leont’ev, P. A. Baranov, and I. A. Pyshnyi, “Numerical analysis of the influence of the depth of a spherical hole on a plane wall on turbulent heat exchange,” J. Eng. Phys. Thermophys., vol. 76, no. 1, pp. 61–69, 2003. DOI: 10.1023/A:1022911123758.
  • H. K. Moon, T. O’Connell, and R. Sharma, “Heat transfer enhancement using a convex-patterned surface,” J. Turbomach., vol. 125, no. 2, pp. 274–280, 2003. DOI: 10.1115/1.1556404.
  • S. Y. Won, Q. Zhang, and P. M. Ligrani, “Comparisons of flow structure above dimpled surfaces with different dimple depths in a channel,” Phys. Fluids, vol. 17, no. 4, pp. 045105–045109, 2005. DOI: 10.1063/1.1872073.
  • Y. Chen, Y. T. Chew, and B. C. Khoo, “Enhancement of heat transfer in turbulent channel flow over dimpled surface,” Int. J. Heat Mass Transf., vol. 55, no. 25–26, pp. 8100–8121, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.08.043.
  • J. Turnow, N. Kornev, V. Zhdanov, and E. Hassel, “Flow structures and heat transfer on dimples in a staggered arrangement,” Int. J. Heat Fluid Flow, vol. 35, pp. 168–175, June 2012. DOI: 10.1016/j.ijheatfluidflow.2012.01.002.
  • C. M. Tay, Y. T. Chew, B. C. Khoo, and J. B. Zhao, “Development of flow structures over dimples,” Exp. Thermal Fluid Sci., vol. 52, pp. 278–287, Jan. 2014. DOI: 10.1016/j.expthermflusci.2013.10.001.
  • Y. Rao, Y. Feng, B. Li, and B. Weigand, “Experimental and numerical study of heat transfer and flow friction in channels with dimples of different shapes,” ASME J. Heat Transf., vol. 137, no. 3, pp. 031901–031910, 2015. DOI: 10.1115/1.4029036.
  • H.-M. Kim, M.-A. Moon, and K.-Y. Kim, “Multi-objective optimization of a cooling channel with staggered elliptic dimples,” Energy, vol. 36, no. 5, pp. 3419–3428, 2011. DOI: 10.1016/j.energy.2011.03.043.
  • S. Farokhi, and R. R. Taghavi, “Supersonic vortex generator,” U.S. Patent 55,989,90A, Feb. 4, 1997.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST turbulence model,” Proc. of the 4th Int. Symp. on Turbulence, Heat and Mass Transf. Antalya, Turkey, pp. 625–632, Oct. 12–17, 2003.
  • J. E. Bardina, P. G. Huang, and T. J. Coakley, “Turbulence modeling validation, testing, and development,” NASA Ames Research Center, Moffett Field, CA, USA, Rep. NASA-TM-110446, April, 1997.
  • ANSYS CFX, Solver Theory Guide Release 16.0. Canonsburg, PA, USA: ANSYS Inc., 2014.
  • T. E. Schmidt, “Heat transfer calculations for extended surfaces,” Refrigerating Eng., vol. 4, no. no. 3, pp. 351–357, 1949.
  • W. M. Kays, and A. L. London, Compact Heat Exchangers. New York: McGraw-Hill Book Co., 1984.
  • K.-W. Song, and L.-B. Wang, “The effectiveness of secondary flow produced by vortex generators mounted on both surfaces of the fin to enhance heat transfer in a flat tube bank fin heat exchanger,” ASME J. Heat Transf., vol. 135, no. 4, pp. 041902-1–41902-11, 2013. DOI: 10.1115/1.4023037.
  • R. K. Shah, “Compact heat exchanger surface selection methods,” Proc. 6th International Heat Transfer Conference, Toronto, Canada, pp. 193–199, Aug. 7–11, 1978.
  • A. L. London, and C. K. Ferguson, “Test results of high-performance heat-exchanger surfaces used in aircraft intercoolers and their significance for gas-turbine regenerator design,” Trans. ASME, vol. 71, pp. 17–26, 1949.
  • ANSYS ICEM. CFD User Guide Release 16.0. Canonsburg, PA: ANSYS Inc., 2014.
  • C.-C. Wang, K.-Y. Chi, and C.-J. Chang, “Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation,” Int. J. Heat Mass Transf., vol. 43, no. 15, pp. 2693–2700, 2000. DOI: 10.1016/S0017-9310(99)00333-6.
  • V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Phys. Fluids A: Fluid Dynamics, vol. 4, no. 7, pp. 1510–1520, 1992. DOI: 10.1063/1.858424.
  • G. I. Mahmood, M. Z. Sabbagh, and P. M. Ligrani, “Heat transfer in a channel with dimples and protrusions on opposite walls,” J. Thermophys. Heat Transf., vol. 15, no. 3, pp. 275–283, 2001. DOI: 10.2514/2.6623.
  • R. K. Shah, and D. P. Sekulić, Fundamentals of Heat Exchanger Design. Hoboken, NJ: John Wiley & Sons, 2003.
  • A. Sadeghianjahromi, S. Kheradmand, and H. Nemati, “Developed correlations for heat transfer and flow friction characteristics of louvered finned tube heat exchangers,” Int. J. Thermal Sci., vol. 129, pp. 135–144, Jul. 2018. DOI: 10.1016/j.ijthermalsci.2018.03.002.
  • C.-C. Wang, Y.-M. Hwang, and Y.-T. Lin, “Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers,” Int. J. Refrigeration, vol. 25, no. 5, pp. 673–680, 2002. DOI: 10.1016/S0140-7007(01)00049-4.