352
Views
9
CrossRef citations to date
0
Altmetric
Articles

Heat Transfer Characteristics in a Pin Finned Channel With Different Dimple Locations

, , &

References

  • A. Murata, K. Yano, M. Hanai, H. Saito, and K. Iwamoto, “Arrangement effects of inclined teardrop-shaped dimples on film cooling performance of dimpled cutback surface at airfoil trailing edge,” Int. J. Heat Mass Transfer, vol. 107, pp. 761–770, Apr 2017. DOI:10.1016/j.ijheatmasstransfer.2016.11.081.
  • J. K. Ostanek, and K. A. Thole, “Flowfield measurements in a single row of low aspect ratio pin fins,” J. Turbomach., vol. 134, no. 5, pp. 051034, (10 pages), Sep. 2012. DOI:10.1115/1.4004755.
  • J. C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology. Boca Raton, FL, USA: CRC Press, 2012.
  • F. E. Ames, and L. A. Dvorak, “Turbulent transport in pin fin arrays: Experimental data and predictions,” ASME Turbo Expo, Reno, Nevada, Jun. 6–9, 2005, Paper No. GT2005-68180.
  • M. A. Moon, and K. Y. Kim, “Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel,” Int. J. Heat Mass Transfer, vol. 72, pp. 148–162, May 2014. DOI:10.1016/j.ijheatmasstransfer.2013.12.085.
  • Y. Rao, C. Wan, and Y. Xu, “An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths,” Int. J. Heat Mass Transfer, vol. 55, no. 23–24, pp. 6723–6733, Nov. 2012. DOI:10.1016/j.ijheatmasstransfer.2012.06.081.
  • N. Kulasekharan, and B. Prasad, “Conjugate heat transfer analysis in the trailing region of a gas turbine vane,” Heat Transfer Engineering, vol. 31, no. 6, pp. 468–484, 2010. DOI:10.1080/01457630903409605.
  • N. Sahiti, A. Lemouedda, D. Stojkovic, F. Durst, and E. Franz, “Performance comparison of pin fin in-duct flow arrays with various pin cross-sections,” Appl. Therm. Eng., vol. 26, no. 11–12, pp. 1176–1192, Aug 2006. DOI:10.1016/j.applthermaleng.2005.10.042.
  • M. K. Chyu, C. H. Yen, and S. Siw, “Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond shaped elements,” ASME Turbo Expo, Montreal, Canada, May 14–17, 2007, Paper No. GT2007-28306.
  • A. Maji, D. Bhanja, P. K. Patowari, and B. Kundu, “Thermal Analysis for Heat Transfer Enhancement in Perforated Pin Fins of Various Shapes with Staggered Arrays,” Heat Transfer Eng., vol. 40, no. 3–4, pp. 295, 2019. (In press). DOI:10.1080/01457632.2018.1429047.
  • J. Pandit, M. Thompson, S. V. Ekkad, and S. T. Huxtable, “Effect of pin fin to channel height ratio and pin fin geometry on heat transfer performance for flow in rectangular channels,” Int. J. Heat Mass Transfer, vol. 77, pp. 359–368, Oct. 2014. DOI:10.1016/j.ijheatmasstransfer.2014.05.030.
  • S. A. Lawson, A. A. Thrift, K. A. Thole, and A. Kohli, “Heat transfer from multiple row arrays of low aspect ratio pin fins,” Int. J. Heat Mass Transfer, vol. 54, no. 17–18, pp. 4099–4109, Aug. 2011. DOI:10.1016/j.ijheatmasstransfer.2011.04.001.
  • M. E. Lyall, A. A. Thrift, K. A. Thole, and A. Kohli, “Heat transfer from low aspect ratio pin fins,” J. Turbomach., vol. 133, no. 1, pp. 011001 (10 pages), Sep. 2011. DOI:10.1115/1.2812951.
  • T. M. Jeng, and S. C. Tzeng, “Pressure drop and heat transfer of square pin-fin arrays in in-line and staggered arrangements,” Int. J. Heat Mass Transfer, vol. 50, no. 11–12, pp. 2364–2375, June 2007. DOI:10.1016/j.ijheatmasstransfer.2006.10.028.
  • J. J. Hwang, and C. C. Lui, “Measurement of endwall heat transfer and pressure drop in a pin-fin wedge duct,” Int. J. Heat Mass Transfer, vol. 45, no. 4, pp. 877–889, Feb 2002. DOI:10.1016/S0017-9310(01)00193-4.
  • P. M. Ligrani, M. M. Oliveira, and T. Blaskovich, “Comparison of heat transfer augmentation techniques,” AIAA J, vol. 41, no. 3, pp. 337–362, Mar. 2003. DOI:10.2514/2.1964.
  • P. Ligrani, “Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines,” Int. J. Rotating Machinery, vol. 2013, pp. 275653 (32 pages), 2013. DOI:10.1155/2013/275653.
  • G. I. Mahmood, M. Z. Sabbagh, P. M. Ligrani, B. Glezer, and H. K. Moon, “Heat transfer in a channel with dimples and protrusions on opposite walls,” J. Thermophys. Heat Transfer, vol. 15, no. 3, pp. 275–283, July 2001. DOI:10.2514/2.6623.
  • G. I. Mahmood, and P. M. Ligrani, “Heat transfer in a dimpled channel: Combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure,” Int. J. Heat Mass Transfer, vol. 45, no. 10, pp. 2011–2020, May 2002. DOI:10.1016/S0017-9310(01)00314-3.
  • P. M. Ligrani, G. I. Mahmood, J. L. Harrison, C. M. Clayton, and D. L. Nelson, “Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls,” Int. J. Heat Mass Transfer, vol. 44, no. 23, pp. 4413–4425, Dec. 2001. DOI:10.1016/S0017-9310(01)00101-6.
  • P. M. Ligrani, J. L. Harrison, G. I. Mahmmod, and M. L. Hill, “Flow structure due to dimple depressions on a channel surface,” Phys. Fluids, vol. 13, no. 11, pp. 3442–3451, Nov. 2001. DOI:10.1063/1.1404139.
  • Y. Xie, H. Qu, and D. Zhang, “Numerical investigation of flow and heat transfer in rectangular channel with teardrop dimple/protrusion,” Int. J. Heat Mass Transfer, vol. 84, pp. 486–496, May 2015. DOI:10.1016/j.ijheatmasstransfer.2015.01.055.
  • H. S. Yoon, S. H. Park, C. Choi, and M. Y. Ha, “Numerical study on characteristics of flow and heat transfer in a cooling passage with a tear-drop dimple surface,” Int. J. Therm. Sci., vol. 89, pp. 121–135, Mar 2015. DOI:10.1016/j.ijthermalsci.2014.11.002.
  • C. N. Jordan, and L. M. Wright, “Heat transfer enhancement in a rectangular (AR= 3:1) channel with V-shaped dimples,” J. Turbomach.-Trans. ASME, vol. 135, no. 1, pp. 011028, Jan. 2013.vol 10 pages), DOI:10.1115/1.4006422.
  • S. A. Isaev, N. V. Kornev, A. I. Leontiev, and E. Hassel, “Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel,” Int. J. Heat Mass Transfer, vol. 53, no. 1–3, pp. 178–197, Jan. 2010. DOI:10.1016/j.ijheatmasstransfer.2009.09.042.
  • S. A. Isaev, A. V. Schelchkov, A. I. Leontiev, P. A. Baranov, and M. E. Gulcova, “Numerical simulation of the turbulent air flow in the narrow channel with a heated wall and a spherical dimple placed on it for vortex heat transfer enhancement depending on the dimple depth,” Int. J. Heat Mass Transfer, vol. 94, pp. 426–448, Mar. 2016. DOI:10.1016/j.ijheatmasstransfer.2015.11.002.
  • L. Luo, W. Du, F. Wen, S. Wang, and Z. Zhao, “Convergence angles effect on the heat transfer characteristics in a wedge duct with dimple/protrusion,” Heat Transf. Res., vol. 48, no. 14, pp. 1237–1262, 2017. DOI:10.1615/HeatTransRes.2017017578.
  • A. Samad, K. D. Lee, and K. Y. Kim, “Shape optimization of a dimpled channel to enhance heat transfer using a weighted-average surrogate model,” Heat Transfer Engineering, vol. 31, no. 13, pp. 1114–1124, 2010. DOI:10.1080/01457631003640453.
  • R. Fransen, “LES based aerothermal modeling of turbine blade cooling systems,” Ph.D. dissertation, Institut National Polytechnique de Toulouse, France, 2013.
  • P. Singh, and S. Ekkad, “Effects of Rotation on Heat Transfer due to Jet Impingement on Cylindrical Dimpled Target Surface,” ASME Turbo Expo, Seoul, South Korea, June 13–17, 2016, Paper No. GT2016-57145.
  • Y. Xie, D. Shi, and Z. Shen, “Experimental and numerical investigation of heat transfer and friction performance for turbine blade tip cap with combined pin-fin-dimple/protrusion structure,” Int. J. Heat Mass Transfer, vol. 104, pp. 1120–1134, Jan. 2017. DOI:10.1016/j.ijheatmasstransfer.2016.09.032.
  • P. Singh, J. Pandit, and S. V. Ekkad, “Characterization of heat transfer enhancement and frictional losses in a two-pass square duct featuring unique combinations of rib turbulators and cylindrical dimples,” Int. J. Heat Mass Transfer, vol. 106, pp. 629–647, Mar. 2017. DOI:10.1016/j.ijheatmasstransfer.2016.09.037.
  • H. Chung et al., “Heat transfer and fluid flow on dimpled surface with bleed flow,” Heat Transfer Engineering, vol. 35, no. 6–8, pp. 641–650, 2014. DOI:10.1080/01457632.2013.837695.
  • S. Wang, W. Du, L. Luo, D. Qiu, X. Zhang, and S. Li, “Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations,” Int. J. Heat Mass Transfer, vol. 117, pp. 1216–1230, Feb. 2018. DOI:10.1016/j.ijheatmasstransfer.2017.10.087.
  • L. Luo, F. Wen, L. Wang, B. Sundén, and S. Wang, “Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger,” Appl. Energy, vol. 183, pp. 1317–1332, Dec. 2016. DOI:10.1016/j.apenergy.2016.09.077.
  • L. Luo, W. Du, S. Wang, L. Wang, B. Sundén, and X. Zhang, “Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators,” Energy, vol. 137, pp. 1–19, Oct. 2017. DOI:10.1016/j.energy.2017.07.001.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. Wang, “Heat transfer and friction factor performance in a pin fin wedge duct with different dimple arrangements,” Numer. Heat Tranf. A-Appl., vol. 69, no. 2, pp. 209–226, 2016. DOI:10.1080/10407782.2015.1052301.
  • W. Du, L. Luo, S. Wang, and X. Zhang, “Flow structure and heat transfer characteristics in a 90-deg turned pin fined duct with different dimple/protrusion depths,” Appl. Therm. Eng., vol. 146, no. 5, pp. 826–842, Jan 2019. DOI:10.1016/j.applthermaleng.2018.10.052.
  • L. Luo, W. Du, S. Wang, W. Wu, and X. Zhang, “Multi-objective optimization of the dimple/protrusion channel with pin fins for heat transfer enhancement,” Int. J. Num. Method H, vol. 29, no. 2, pp. 790–813, 2019. DOI:10.1108/HFF-05-2018-0194.
  • W. Du,L. Luo,S. Wang, andX. Zhang,“Effect of the dimple location and rotating number on the heat transfer and flow structure in a pin finned channel,” Int. J. Heat Mass Transf., vol. 127, pp. 111–129, 2018. DOI:10.1016/j.ijheatmasstransfer.2018.08.045
  • S. W. Chang, T. L. Yang, C. C. Huang, and K. F. Chiang, “Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array,” Int. J. Heat Mass Transfer, vol. 51, no. 21–22, pp. 5247–5259, Oct. 2008. DOI:10.1016/j.ijheatmasstransfer.2008.02.046.
  • S. D. Hwang, H. G. Kwon, and H. H. Cho, “Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers,” Energy, vol. 35, no. 12, pp. 5357–5364, Dec. 2010. DOI:10.1016/j.energy.2010.07.022.
  • Y. A. Cengel, and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 6th edition. New York: McGraw-Hill Education, 2020.
  • J. F. Fan, W. K. Ding, J. F. Zhang, Y. L. He, and W. Q. Tao, “A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving,” Int. J. Heat Mass Transfer, vol. 52, no. 1–2, pp. 33–44, Jan. 2009. DOI:10.1016/j.ijheatmasstransfer.2008.07.006.
  • S. C. Hung, S. C. Huang, and Y. H. Liu, “Influences of the Non-Uniform Pin-Fin Array on Heat Transfer Distribution in a Rotating Rectangular Channel,” ASME Turbo Expo, Oslo, Norway, June 11–15, 2018, Paper No. GT2018-76372.
  • S. Caliskan, A. Dogan, and I. Kotcioglu, “Experimental investigation of heat transfer from different pin fin in a rectangular channel,” Exp. Heat Transfer, vol. 32, no. 4, pp. 376–392, 2018. DOI:10.1080/08916152.2018.1526228.
  • L. Luo, H. Yan, W. Du, S. Wang, C. Li, and X. Zhang, “Flow structure and heat transfer characteristics of a rectangular channel with pin fins and dimples with different shapes,” J. Therm. Sci. Eng. Appl., vol. 11, no. 2, pp. 024501, 2018 (10 pages). DOI:10.1115/1.4041598.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.