515
Views
12
CrossRef citations to date
0
Altmetric
Articles

Water pool boiling across low pore density aluminum foams

, , , &

References

  • D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci., vol. 66, pp. 173–196, 2015. DOI: 10.1016/j.expthermflusci.2015.03.023.
  • N. Khan, D. Pinjala, and K. C. Toh, “Pool boiling heat transfer enhancement by surface modification I. Micro structures for electronics cooling: A review,” presented at the 6th Electronics Packaging Technology Conference, Singapore, pp. 273–280, 2004.
  • G. T. Liang and I. Mudawar, “Pool boiling critical heat flux (CHF) – Part 1: Review of mechanisms, models, and correlations,” Int. J. Heat Mass Transf., vol. 117, pp. 1352–1367, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.134.
  • S. Mori and Y. Utaka, “Critical heat flux enhancement by surface modification in a saturated pool boiling: A review,” Int. J. Heat Mass Transf., vol. 108, pp. 2534–2557, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.090.
  • K. C. Leong, J. Y. Ho, and K. K. Wong, “A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces,” Appl. Therm. Eng., vol. 112, pp. 999–1019, 2017. DOI: 10.1016/j.applthermaleng.2016.10.138.
  • L. Cheng, “Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces,” Heat Transf. Eng., vol. 34, no. 13, pp. 1016–1043, 2013. DOI: 10.1080/01457632.2013.763538.
  • M. M. Rahman and M. McCarthy, “Boiling enhancement on nanostructured surfaces with engineered variations in wettability and thermal conductivity,” Heat Transf. Eng., vol. 38, no. 14–15, pp. 1285–1295, 2017. DOI: 10.1080/01457632.2016.1242961.
  • K. Wang, S. Gong, B. Bai, and W. Ma, “On the relation between nucleation site density and critical heat flux of pool boiling,” Heat Transf. Eng., vol. 39, no. 17–18, pp. 1498–1507, 2018. DOI: 10.1080/01457632.2017.1369836.
  • S. S. Feng, F. C. Li, F. G. Zhang, and T. J. Lu, “Natural convection in metal foam heat sinks with open slots,” Exp. Therm. Fluid Sci., vol. 91, pp. 354–362, 2018. DOI: 10.1016/j.expthermflusci.2017.07.010.
  • J. Shi, G. H. Zheng, and Z. Q. Chen, “Experimental investigation on flow condensation in horizontal tubes filled with annular metal foam,” Int. J. Heat Mass Transf., vol. 116, pp. 920–930, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.007.
  • B. Kotresha and N. Gnanasekaran, “Numerical simulations of fluid flow and heat transfer through aluminum and copper metal foam heat exchanger – A comparative study,” Heat Transf. Eng., vol. 41, no. 5–6, 2019. DOI: 10.1080/01457632.2018.1546969.
  • S. Mancin, C. Zilio, A. Cavallini, and L. Rossetto, “Heat transfer during air flow in aluminum foams,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4976–4984, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.033.
  • S. Mancin, A. Diani, L. Doretti, and L. Rossetto, “R134a and R1234ze(E) liquid and flow boiling heat transfer in a high porosity copper foam,” Int. J. Heat Mass Transf., vol. 74, pp. 77–87, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.070.
  • S. Mancin, A. Diani, L. Doretti, K. Hooman, and L. Rossetto, “Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams,” Int. J. Therm. Sci., vol. 90, pp. 79–89, 2015. DOI: 10.1016/j.ijthermalsci.2014.11.023.
  • A. Diani, S. Mancin, L. Doretti, and L. Rossetto, “Low-GWP refrigerants flow boiling heat transfer in a 5 PPI copper foam,” Int. J. Multiphase Flow, vol. 76, pp. 111–121, 2015. DOI: 10.1016/j.ijmultiphaseflow.2015.07.003.
  • A. Muley, C. Kiser, B. Sundén, and R. K. Shah, “Foam heat exchangers: A technology assessment,” Heat Transf. Eng., vol. 33, no. 1, pp. 42–51, 2012. DOI: 10.1080/01457632.2011.584817.
  • X. H. Han, Q. Wang, Y. G. Park, C. T’Joen, A. Sommers, and A. Jacobi, “A review of metal foam and metal matrix composites for heat exchangers and heat sinks,” Heat Transf. Eng., vol. 33, no. 12, pp. 991–1009, 2012. DOI: 10.1080/01457632.2012.659613.
  • J. L. Xu, X. B. Ji, W. Zhang, and G. H. Liu, “Pool boiling heat transfer of ultra-light copper foam with open cells,” Int. J. Multiphase Flow, vol. 34, no. 11, pp. 1008–1022, 2008. DOI: 10.1016/j.ijmultiphaseflow.2008.05.003.
  • Y. Zhu, H. Hu, G. Ding, D. Zhuang, and H. Peng, “Heat transfer enhancement by metal foam during nucleate pool boiling of refrigerant/oil mixture at a wide range of oil concentration,” HVAC&R Res., vol. 18, no. 3, pp. 377–389, 2012.
  • Y. P. Yang, X. B. Ji, and J. L. Xu, “Pool boiling heat transfer on copper foam covers with water as working fluid,” Int. J. Therm. Sci., vol. 49, no. 7, pp. 1227–1237, 2010. DOI: 10.1016/j.ijthermalsci.2010.01.013.
  • Z. G. Xu, Z. G. Qu, C. Y. Zhao, and W. Q. Tao, “Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface,” Int. J. Heat Mass Transf., vol. 77, pp. 1169–1182, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.037.
  • W. M. Rohsenow, “A method of correlating heat transfer data for surface boiling of liquids,” Transf. ASME, vol. 74, pp. 969–976, 1952.
  • Z. G. Xu and C. Y. Zhao, “Influences of nanoparticles on pool boiling heat transfer in porous metals,” Appl. Therm. Eng., vol. 65, no. 1–2, pp. 34–41, 2014. DOI: 10.1016/j.applthermaleng.2013.12.077.
  • Z. G. Xu and C. Y. Zhao, “Experimental study on pool boiling heat transfer in gradient metal foams,” Int. J. Heat Mass Transf., vol. 85, pp. 824–829, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.017.
  • Z. G. Xu and C. Y. Zhao, “Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions,” Appl. Therm. Eng., vol. 100, pp. 68–77, 2016. DOI: 10.1016/j.applthermaleng.2016.02.016.
  • Z. G. Xu and J. Qin, “Pool boiling investigation on gradient metal foams with double layers,” Appl. Therm. Eng., vol. 131, pp. 595–606, 2018. DOI: 10.1016/j.applthermaleng.2017.12.040.
  • L. W. Jin, K. C. Leong, and I. Pranoto, “Saturated pool boiling heat transfer from highly conductive graphite foams,” Appl. Therm. Eng., vol. 31, no. 14–15, pp. 2685–2693, 2011. DOI: 10.1016/j.applthermaleng.2011.04.038.
  • I. Pranoto, K. C. Leong, and L. W. Jin, “The role of graphite foam pore structure on saturated pool boiling enhancement,” Appl. Therm. Eng., vol. 42, pp. 163–172, 2012. DOI: 10.1016/j.applthermaleng.2012.03.001.
  • Y. Zhu et al., “Influence of oil on nucleate pool boiling heat transfer of refrigerant on metal foam covers,” Int. J. Refrig., vol. 34, no. 2, pp. 509–517, 2011. DOI: 10.1016/j.ijrefrig.2010.10.006.
  • K. K. Wong and K. C. Leong, “Saturated pool boiling enhancement using porous lattice structures produced by selective laser melting,” Int. J. Heat Mass Transf., vol. 121, pp. 46–63, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.