210
Views
6
CrossRef citations to date
0
Altmetric
Articles

Methods to Evaluate Heat Transfer Enhancement in an Ultrasonic Heat Exchanger

, , , &

References

  • A. Ornatskii and V. Shcherbakov, “Intensification of heat transfer in the critical region with the aid of ultrasonics,” Teploenergetika, vol. 6, no. no. 1, pp. 84–85, 1959.
  • M. Legay, N. Gondrexon, S. L. Person, P. Boldo, and A. Bontemps, “Enhancement of heat transfer by ultrasound: Review and recent advances,” Int. J. Chem. Eng., vol. 2011, pp. 1, Jul. 2011. DOI: 10.1155/2011/670108.
  • M. Legay, S. L. Person, N. Gondrexon, P. Boldo, and A. Bontemps, “Performances of two heat exchangers assisted by ultrasound,” Appl. Therm. Eng., vol. 37, pp. 60–66, May 2012. DOI: 10.1016/j.applthermaleng.2011.12.051.
  • M. Legay et al., “Improvement of heat transfer by means of ultrasound: Application to a double tube heat exchanger,” Ultrason. Sonochem, vol. 19, no. 6, pp. 1194–1200, Nov. 2012. DOI: 10.1016/j.ultsonch.2012.04.001.
  • T. Mason and J. Lorimer, Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Weinheim, Germany: Wiley-VCH, Mar. 2003.
  • M. Legay, “Intensification des processus de transfert de chaleur par ultrasons, vers un nouveau type d’échangeur de chaleur: L’échangeur vibrant,” Ph.D. dissertation, Université Joseph Fourier, Grenoble, 2012.
  • M. Rahimi, M. Abolhasani, and N. Azimi, “High frequency ultrasound penetration through concentric tubes: illustrating cooling effects and cavitation intensity,” Heat Mass Transfer, vol. 51, no. 4, pp. 587–599, Apr. 2015. DOI: 10.1007/s00231-014-1435-9.
  • N. Gondrexon et al., “Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound,” Chem. Eng. Process. Proc. Intens., vol. 49, no. 9, pp. 936–942, Sept. 2010. DOI: 10.1016/j.cep.2010.06.007.
  • Y. Yao, X. Zhang, and Y. Guo, “Experimental study on heat transfer enhancement of water-water shell-and-tube heat exchanger assisted by power ultrasonic,” Proceedings of the 13th International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, IN, USA, Jul. 12–15, 2010.
  • P. Vaxelaire, “Modular unit for a tubular ultrasonic reactor,” Patent US005384508A, Jan. 24, 1995.
  • N. Dhanalakshmi, R. Nagarajan, N. Sivagaminathan, and B. Prasad, “Acoustic enhancement of heat transfer in furnace tubes,” Chem. Eng. Process., vol. 59, pp. 36–42, Sept. 2012. DOI: 10.1016/j.cep.2012.05.001.
  • H. Tam, L. Tam, A. Ghajar, and I. Chen, “Experimental study of the ultrasonic effect on heat transfer inside a horizontal mini-tube in the laminar region,” Appl. Therm. Eng., vol. 114, pp. 1300–1308, Mar. 2017. DOI: 10.1016/j.applthermaleng.2016.09.166.
  • A. Bergles, and P. N. Newell, Jr, “The influence of ultrasonic vibration on heat transfer to water flowing annuli,” Int. J. Heat Mass Transfer, vol. 8, no. 10, pp. 1273–2180, Oct. 1965. DOI: 10.1016/0017-9310(65)90055-4.
  • O. Bulliard-Sauret, S. Ferrouillat, L. Vignal, A. Memponteil, and N. Gondrexon, “Heat transfer enhancement using 2 MHz ultrasound,” Ultrason. Sonochem., vol. 39, pp. 262–271, Nov. 2017. DOI: 10.1016/j.ultsonch.2017.04.021.
  • O. Bulliard-Sauret et al., “Experimental study of heat transfer enhancement using ultrasound on a flat plate in forced convection,” Proceedings of the 8th Turbulence Heat and Mass Transfer (THMT-15), Begell House, Sarajevo; Bosnia and Herzegovina, Sept. 15–18, 2015.
  • O. Bulliard-Sauret, “Étude expérimentale de l’intensification des transferts thermiques par les ultrasons en convection forcée,” Ph.D. dissertation, Université Grenoble Alpes, France, 2016.
  • H. Fairbanks, “Influence of ultrasound upon heat transfer systems,” Proceedings of the 1979 Ultrasonic Symposium, New Orleans, LA, Sept. 26–28, 1979. DOI: 10.1109/ULTSYM.1979.197226.
  • S. Nomura, and M. Nakagawa, “Ultrasonic enhancement of heat transfer on narrow surface,” Heat Trans. Japanese Res., vol. 22, no. 6, pp. 546–558, 1993. (Originally published in Transactions of the Japanese Society of Mechanical Engineering, vol. 59, no. 563, pp. 2232–2237, 1993) DOI: 10.1299/kikaib.59.2232.
  • S. Nomura, A. Yamamoto, and K. Murakami, “Ultrasonic heat transfer enhancement using a horn-type transducer,” Jpn. J. Appl. Phys., vol. 41, no. Part 1, No. 5B, pp. 3217–3222, May 2002. DOI: 10.1143/JJAP.41.3217.
  • D. Zhou, X. Hu, and D. Liu, “Local convective heat transfer from a horizontal tube in an acoustic cavitation field,” J. Therm. Sci., vol. 13, no. 4, pp. 338–343, Nov. 2004. DOI: 10.1007/s11630-004-0052-1.
  • H.-Y. Kim, Y. Kim, and B. Kang, “Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration,” Int. J. Heat Mass Transfer, vol. 47, no. 12–13, pp. 2831–2840, Jun. 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.11.033.
  • M. Abolhasani, A. Karami, and M. Rahimi, “Numerical modeling and optimization of the enhancement of the cooling rate in concentric tubes under ultrasound field,” Numer. Heat Transf Part A, vol. 67, no. 11, pp. 1282–1309, Jun. 2015. DOI: 10.1080/10407782.2014.955371.
  • A. Monnot, P. Boldo, N. Gondrexon, and A. Bontemps, “Enhancement of cooling rate by means of high frequency ultrasound,” Heat Transf Eng., vol. 28, no. 1, pp. 3–8, 2007. DOI: 10.1080/01457630600985485.
  • N. Gondrexon et al., “Intensification of heat and mass transfer by ultrasound Application to heat exchangers and membrane separation processes,” Ultrason. Sonochem., vol. 25, pp. 40–50, Jul. 2015. DOI: 10.1016/j.ultsonch.2014.08.010.
  • W. Benzinger, U. Schygulla, M. Jäger, and K. Schubert, “Anti fouling investigations with ultrasound in a microstructured heat exchanger,” Proceedings of the 6th International Conference on Heat Exchanger Fouling and Cleaning – Challenges and Opportunities, ECI Symposium Series, Kloster Irsee, Germany, Jun. 5–10, 2005.
  • T. Bott, “Biofouling control with ultrasound,” Heat Transfer Eng., vol. 21, no. 3, pp. 43–49, 2000. DOI: 10.1080/014576300270898.
  • H. Li, X. Huai, J. Cai, and S. Liang, “Experimental research on antiscale and scale removal by ultrasonic cavitation,” J. Therm. Sci., vol. 18, no. 1, pp. 65–73, 2009. DOI: 10.1007/s11630-009-0065-x.
  • D. Wang, T. Tao, G. Xu, A. Luo, and S. Kang, “Experimental study on frosting suppression for a finned-tube evaporator using ultrasonic vibration,” Exp. Therm. Fluid Sci., vol. 36, pp. 1–11, Jan. 2012. DOI: 10.1016/j.expthermflusci.2011.03.002.
  • M. Legay, Y. Allibert, N. Gondrexon, P. Boldo, and S. L. Person, “Experimental investigations of fouling reduction in an ultrasonically-assisted heat exchanger,” Exp. Therm. Fluid Sci., vol. 46, pp. 111–119, Apr. 2013. DOI: 10.1016/j.expthermflusci.2012.12.001.
  • N. Hotrum, P. D. Jong, J. Akkerman, and M. Fox, “Pilot scale ultrasound enabled plate heat exchanger – its design and potential to prevent biofouling,” J. Food Eng., vol. 153, pp. 81–88, May 2015. DOI: 10.1016/j.jfoodeng.2014.11.026.
  • K. Adachi, K. Saiki, and H. Sato, “Suppression of frosting on a metal surface using ultrasonic vibration,” Proceedings of the1998 IEEE Ultrasonics Symposium, Sendai, Japan, Oct. 5–8, 1998. DOI: 10.1109/ULTSYM.1998.762258.
  • K. Adachi, K. Saiki, H. Sato, and T. Ito, “Ultrasonic frost suppression,” Jpn J. Appl. Phys., vol. 42, no. Part 1, No. 2A, pp. 682–685, 2003. DOI: 10.1143/JJAP.42.682.
  • L. Barelli, G. Bidini, and S. Moraglia, “Development of an innovative defrosting system for commercial chiller evaporators through piezoelectric elements application,” Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, Nov. 13–19, 2004. DOI: 10.1115/IMECE2004-60096.
  • D. Li, Z. Chen, and M. Shi, “Effect of ultrasound on frost formation on a cold flat surface in atmospheric air flow,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 1247–1252, Nov. 2010. DOI: 10.1016/j.expthermflusci.2010.05.005.
  • D. Li and Z. Chen, “Experimental study on instantaneously shedding frozen water droplets from cold vertical surface by ultrasonic vibration,” Exp. Therm. Fluid Sci., vol. 53, pp. 17–25, Feb. 2014. DOI: 10.1016/j.expthermflusci.2013.10.005.
  • H. Tan, T. Tao, G. Xu, S. Zhang, D. Wang, and X. Luo, “Experimental study on defrosting mechanism of intermittent ultrasonic resonance for a finned-tube evaporator,” Exp. Therm. Fluid Sci., vol. 52, pp. 308–317, Jan. 2014. DOI: 10.1016/j.expthermflusci.2013.10.006.
  • H. Tan, G. Xu, T. Tao, X. Sun, and W. Yao, “Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration,” Appl. Energy, vol. 158, pp. 220–232, Nov. 2015. DOI: 10.1016/j.apenergy.2015.08.072.
  • H. J. Kim, and J. H. Jeong, “Numerical analysis of experimental observations for heat transfer augmentation by ultrasonic vibration,” Heat Transfer Eng., vol. 27, no. 2, pp. 14–22, 2006. DOI: 10.1080/01457630500397161.
  • F. C. Liu, S. W. Chen, and J. D. Lee, “Feasibility study of heat transfer enhancement by ultrasonic vibration under subcooled pool condition,” Heat Transfer Eng., vol. 39, no. 7–8, pp. 654–662, 2018. DOI: 10.1080/01457632.2017.1325672.
  • F. J. Uhia, A. Campo, and J. Fernandez-Seara, “Uncertainty analysis for experimental heat transfer data obtained by the Wilson plot method. Application to condensation on horizontal plain tubes,” Therm. Sci., vol. 17, no. 2, pp. 471–487, 2013. DOI: 10.2298/TSCI110701136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.