183
Views
9
CrossRef citations to date
0
Altmetric
Articles

Diamond Nanofluids: Microstructural Analysis and Heat Transfer Study

, , &

References

  • S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transf., vol. 52, no. 13/14, pp. 3187–3196, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.
  • L. Snoussi et al., “Natural convection heat transfer in a nanofluid filled U-shaped enclosures: Numerical investigations,” Heat Transf. Eng., vol. 39, no. 16, pp. 1450–1460, 2018. DOI: 10.1080/01457632.2017.1379343.
  • L. Liu, E. S. Kim, Y.-G. Park, and A. M. Jacobi, “The potential impact of nanofluid enhancements on the performance of heat exchangers,” Heat Transf. Eng., vol. 33, no. 1, pp. 31–41, 2012. DOI: 10.1080/01457632.2011.584814.
  • W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transf. Eng., vol. 29, no. 5, pp. 432–460, 2008. DOI: 10.1080/01457630701850851.
  • C. Choi, H. S. Yoo, and J. M. Oh, “Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants,” Curr. Appl. Phys., vol. 8, no. 6, pp. 710–712, 2008. DOI: 10.1016/j.cap.2007.04.060.
  • V. V. Danilenko, “On the history of the discovery of nanodiamond synthesis,” Phys. Solid State, vol. 46, no. 4, pp. 595–599, 2004. DOI: 10.1134/1.1711431.
  • M. Ozawa et al., “Preparation and behavior of brownish, clear nanodiamond colloids,” Adv. Mater., vol. 19, no. 9, pp. 1201–1206, 2007. DOI: 10.1002/adma.200601452.
  • F. Mashali et al., “Thermo-physical properties of diamond nanofluids: a review,” Int. J. Heat Mass Transf., vol. 129, pp. 1123–1135, Feb. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.033.
  • F. Li, L. Li, G. Zhong, Y. Zhai, and Z. Li, “Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids,” Int. J. Heat Mass Transf., vol. 129, pp. 278–286, Feb. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.104.
  • A. Hassani et al., “Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process,” J. Environ. Manage., vol. 211, pp. 53–62, Apr. 2018. DOI: 10.1016/j.jenvman.2018.01.014.
  • N. Singh, G. Chand, and S. Kanagaraj, “Investigation of thermal conductivity and viscosity of carbon nanotubes–ethylene glycol nanofluids,” Heat Transf. Eng., vol. 33, no. 9, pp. 821–827, Jul. 2012. DOI: 10.1080/01457632.2012.646922.
  • K. Xu and Q. Xue, “Deaggregation of ultradispersed diamond from explosive detonation by a graphitization–oxidation method and by hydroiodic acid treatment,” Diam. Relat. Mater., vol. 16, no. 2, pp. 277–282, 2007. DOI: 10.1016/j.diamond.2006.06.006.
  • A. Kujawska, B. Zajaczkowski, L. M. Wilde, and M. H. Buschmann, “Geyser boiling in a thermosyphon with nanofluids and surfactant solution,” Int. J. Therm. Sci., vol. 139, pp. 195–216, May 2019. DOI: 10.1016/j.ijthermalsci.2019.02.001.
  • S. K. Sharma and S. M. Gupta, “Preparation and evaluation of stable nanofluids for heat transfer application: a review,” Exp. Therm. Fluid Sci., vol. 79, pp. 202–212, 2016. DOI: 10.1016/j.expthermflusci.2016.06.029.
  • E. D. Eidelman et al., “A stable suspension of single ultrananocrystalline diamond particles,” Diam. Relat. Mater, vol. 14, no. 11/12, pp. 1765–1769, 2005. DOI: 10.1016/j.diamond.2005.08.057.
  • E. Ōsawa, “Recent progress and perspectives in single-digit nanodiamond,” Diam. Relat. Mater., vol. 16, no. 12, pp. 2018–2022, 2007. DOI: 10.1016/j.diamond.2007.08.008.
  • P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, and R. Kanna, “Heat transfer in a loop heat pipe using diamond-H2O nanofluid,” Heat Transf. Eng., vol. 39, no. 13/14, pp. 1117–1131, 2018. DOI: 10.1080/01457632.2017.1363616.
  • T. Tyler et al., “Thermal transport properties of diamond-based nanofluids and nanocomposites,” Diam. Relat. Mater., vol. 15, no. 11-12, pp. 2078–2081, 2006. DOI: 10.1016/j.diamond.2006.08.007.
  • J. L. Davidson and D. T. Bradshaw, “Compositions with nano-particle size conductive material powder and methods of using same for transferring heat between a heat source and a heat sink.” U.S. Patent 7,390,428, Jun. 2008.
  • G. Shukla and H. Aiyer, “Thermal conductivity enhancement of transformer oil using functionalized nanodiamonds,” IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 4, pp. 2185–2190, 2015. DOI: 10.1109/TDEI.2015.004678.
  • H. Xie, W. Yu, and Y. Li, “Thermal performance enhancement in nanofluids containing diamond nanoparticles,” J. Phys. D. Appl. Phys., vol. 42, no. 9, pp. 095413, 5 pages, 2009. DOI: 10.1088/0022-3727/42/9/095413.
  • L. S. Sundar, M. K. Singh, and A. C. M. Sousa, “Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures,” Diam. Relat. Mater., vol. 69, pp. 49–60, 2016. DOI: 10.1016/j.diamond.2016.07.007.
  • E. Saeed, M. M. Piñeiro, C. Hermida-Merino, and M. J. Pastoriza-Gallego, “Determination of transport properties of glycol-based nanofluids derived from surface functionalized graphene,” Nanomaterials, vol. 9, no. 2, pp. 252–216, Feb. 2019. DOI: 10.3390/nano9020252.
  • Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” vol. 125, no. 2, J. Heat transfer, pp. 151–155, Feb. 2003. DOI: 10.1115/1.1532008.
  • D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transf., vol. 47, pp. 5181–5188, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.07.012.
  • O. A. Shenderova et al., “Carbon Nanostructures,” Crit. Rev. Solid State Mater. Sci., vol. 27, no. 3-4, pp. 227–356, Jul., 2002. DOI: 10.1080/10408430208500497.
  • B. T. Branson, P. S. Beauchamp, J. C. Beam, C. M. Lukehart, and J. L. Davidson, “Nanodiamond nanofluids for enhanced thermal conductivity,” ACS Nano, vol. 7, no. 4, pp. 3183–3189, 2013. DOI: 10.1021/nn305664x.
  • B. T. Branson, “Fluids and polymer composites comprising detonation nanodiamond,” Ph.D. dissertation, Dept. Interdisciplinary Materials Science, Vanderbilt University, Nashville, USA, 2010.
  • Q. Zou, Y. G. Li, L. H. Zou, and M. Z. Wang, “Characterization of structures and surface states of the nanodiamond synthesized by detonation,” Mater. Charact., vol. 60, no. 11, pp. 1257–1262, Nov. 2009. DOI: 10.1016/j.matchar.2009.05.008.
  • Q. Zou, M. Z. Wang, and Y. G. Li, “Analysis of the nanodiamond particle fabricated by detonation,” J. Exp. Nanosci., vol. 5, no. 4, pp. 319–328, 2010. DOI: 10.1080/17458080903531021.
  • F. Mashali, E. Languri, G. Mirshekari, J. Davidson, and D. Kerns, “Nanodiamond nanofluid microstructural and thermo-electrical characterization,” Int. Commun. Heat Mass Transf., vol. 101, pp. 82–88, Feb., 2019. DOI: 10.1016/j.icheatmasstransfer.2019.01.007.
  • F. Maali et al., “Characterization and heat transfer analysis of diamond nanofluids,” ASTFE Digital Library. Begel House Inc., pp. 1617–1621. Apr. 2018. DOI: 10.1615/TFEC2018.mnh.024266.
  • M. J. C, A Treatise on Electricity and Magnetism, vol. 1. Oxford: Clarendon Press, 1873.
  • F. Mashali, “Deaggregated and Functionalized Nanodiamond Fluids for Thermal Management.” M.Sc. Thesis, Dept. Mechanical Eng., Tennessee Technological University, Cookeville, TN, USA, 2019.
  • P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, “Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties,” Int. J. Therm. Sci., vol. 48, no. 2, pp. 290–302, Feb. 2009. DOI: 10.1016/j.ijthermalsci.2008.01.001.
  • F. Mashali et al., “Particulate functionalized nanodiamond as a low concentration additive to liquid systems to enhance their thermal extraction capability,” in 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 553–558. May 2019, Las Vegas, NV, DOI: 10.1109/ITHERM.2019.8757386.
  • F. Mashali, E. M. Languri, G. Mirshekari, J. Davidson, and, and D. Kerns, “Microstructural and thermal characterization of diamond nanofluids,” in ASME 2018 International Mechanical Engineering Congress and Exposition, vol. 8B, pp. V08BT10A002, Nov. 2018, DOI: 10.1115/IMECE2018-87496.
  • W. Yu and H. Xie, “A review on nanofluids: preparation, stability mechanisms, and applications,” J. Nanomater., vol. 2012, pp. 1–17, Jan., 2012. DOI: 10.1155/2012/435873.
  • T. Missana and A. Adell, “On the applicability of DLVO theory to the prediction of clay colloids stability,” J. Colloid Interface Sci., vol. 230, no. 1, pp. 150–156, 2000. DOI: 10.1006/jcis.2000.7003.
  • I. Popa, G. Gillies, G. Papastavrou, and M. Borkovec, “Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes,” J. Phys. Chem. B, vol. 114, no. 9, pp. 3170–3177, 2010. DOI: 10.1021/jp911482a.
  • W. Yu, H. Xie, and D. Bao, “Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets,” Nanotechnology, vol. 21, no. 5, pp. 055705, 7 pages, 2010. DOI: 10.1088/0957-4484/21/5/055705.
  • Mashali, E. M. Languri, J. Davidson, D. Kerns and F. Alkhaldi, “An experimental study on the convective heat transfer behaviour of diamond nanofluids in electronic cooling applications,” in ASME 2018 International Mechanical Engineering Congress and Exposition, vol. 8A, pp. V08AT10A049, Nov. 2018, DOI: 10.1115/IMECE2018-87481.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • Y. A. Cengel Ansd and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications. 6th ed. New York: McGraw-Hill Education, 2020.
  • W. Williams, J. Buongiorno, and L.-W. Hu, “Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes,” J. Heat Transf., vol. 130, no. 4, pp. 42412, 7 pages, 2008. DOI: 10.1115/1.2818775.
  • C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system,” Appl. Thermal Eng., vol. 27, n. no. 8-9, pp. 1501–1056, Jun., 2007. DOI: 10.1016/j.applthermaleng.2006.09.028.
  • W. Duangthongsuk and S. Wongwises, “An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 334–344, Jan. 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.024.
  • S. Dinarvand, R. Hosseini, M. Abulhasansari, and I. Pop, “Buongiorno’s model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid,” Adv. Powder Technol., vol. 26, no. 5, pp. 1423–1434, Sep. 2015. DOI: 10.1016/j.apt.2015.07.017.
  • S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 471, 15 pages, Jul., 2011. DOI: 10.1186/1556-276X-6-471.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, Mar. 2006. DOI: 10.1115/1.2150834.
  • J. P. Holman and W. J. Gajda, Experimental Methods for Engineers, vol. 2. New York: McGraw-Hill, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.