334
Views
4
CrossRef citations to date
0
Altmetric
Articles

Comparison of Experimental and Computational Heat Transfer Characterization of Water Jet Impingement Array with Interspersed Fluid Extraction

, , , , &

References

  • Z. Liu, and Z. Feng, “Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge,” Int. J. Heat Mass Transf. vol. 54, no. 23-24, pp. 4949–4959, 2011. Jul. DOI: 10.1016/j.ijheatmasstransfer.2011.07.008.
  • A. Sarkar, N. Nitin, M. V. Karwe, and R. P. Singh, “Fluid flow and heat transfer in air jet impingement in food processing,” J. Food Sci., vol. 69, no. 4, pp. CRH113–122, 2004. DOI: 10.1111/j.1365-2621.2004.tb06315.x.
  • J. Wajs, D. Mikielewicz, E. Fornalik-Wajs, and M. Bajor, “High performance tubular heat exchanger with minijet heat transfer enhancement,” Heat Transf. Eng., vol. 40, no. 9–10, pp. 772–783, 2019. Mar DOI: 10.1080/01457632.2018.1442369.
  • J. Ditri, R. Cadotte, M. McNulty, J. Hahn, and, and D. Luppa, “Embedded cooling of high heat flux electronics utilizing distributed microfluidic impingement jets,” in Proc. of the ASME 13th ICNMM. San Francisco, CA, USA, Jul. 6-9, 2015. DOI: 10.1115/IPACK2015-48689.
  • D. Hobby, T. M. Bandhauer, C. Jacobsen, and, and D. Sherrer, “Thermal performance of micro-jet impingement device with parallel flow, jet-adjacent fluid removal,” in Proc. of the ASME 16th ICNMM, Dubrovnik, Croatia, Jun. 10-13, 2018. DOI: 10.1115/ICNMM2018-7665.
  • T. Brunschwiler et al., “Direct liquid jet-impingement cooling with micron-sized nozzle array and distributed return architecture,” in 2006 10th IEEE Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronics Systems, Vols 1 and 2. San Diego, CA, USA, May 30-Jun. 2, 2006, pp. 196–203
  • S. Ndao, H. J. Lee, Y. Peles, and M. K. Jensen, “Heat transfer enhancement from micro pin fins subjected to an impinging jet,” Int. J. Heat Mass Transf., vol. 55, no. 1–3, pp. 413–421, 2012. Jan. DOI: 10.1016/j.ijheatmasstransfer.2011.09.037.
  • T. M. Bandhauer, and T. A. Bevis, “High heat flux boiling heat transfer for laser diode arrays,” in Proc. of the ASME 14th ICNMM. Washington, DC, USA, Jul. 10-14, 2016 DOI: 10.1115/ICNMM2016-7947.
  • W. Escher, T. Brunschwiler, B. Michel, and D. Poulikakos, “Experimental investigation of an ultrathin manifold microchannel heat sink for liquid-cooled chips,” J. Heat Transf., vol. 132, no. 8, pp. 81402-1-10, 2010. DOI: 10.1115/1.4001306.
  • S. Narumanchi, M. Mihalic, K. Kelly, and G. Eesley, “Thermal interface materials for power electronics applications,” in 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vols 1-3. Orlando, Fl, USA, May 28-31, 2008, pp. 395–404
  • H. Martin, “Heat and mass transfer between impinging gas jets and solid surfaces,” Adv. Heat Transf., vol. 13, pp. 1–60, 1977. DOI: 10.1016/S0065-2717(08)70221-1.
  • K. Jambunathan, E. Lai, M. A. Moss, and B. L. Button, “A review of heat transfer data for single circular jet impingement,” Int. J. Heat Fluid Flow, vol. 13, no. 2, pp. 106–115, 1992. DOI: 10.1016/0142-727X(92)90017-4.
  • N. Zuckerman, and N. Lior, “Jet impingement heat transfer: physics, correlations, and numerical modeling,” Adv. Heat Transf., vol. 39, pp. 565–631, 2006. DOI: 10.1016/S0065-2717(06)39006-5.
  • Q. Jing, D. Zhang, and Y. Xie, “Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib,” Int. J. Heat Mass Transf., vol. 126, pp. 169–190, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.009.
  • J. F. Maddox, R. W. Knight, and S. H. Bhavnani, “Local thermal measurements of impinging liquid jets with angled confining wall for power electronics cooling,” in Proc. of the ASME 13th ICNMM. San Francisco, CA, USA, Jul. 6-9, 2015.
  • E. Glanzer, and G. Michna, “Novel jet impingement array geometries through 3D printed manifolds,” Presented at the 2016 Summer Heat Transfer Conference. Bellvue, WA, USA, Jul. 10-14, 2016.
  • A. J. Robinson, W. Tan, R. Kempers, J. Colenbrander, N. Bushnell, and, and R. Chen, “A new hybrid heat sink with impinging micro-jet arrays and microchannels fabricated using high volume additive manufacturing,” Annu. IEEE Semicond. Therm. Meas. Manag. Symp., pp. 179–186 2017. DOI: 10.1109/SEMI-THERM.2017.7896927.
  • M. K. Sung, and I. Mudawar, “Single-phase hybrid micro-channel/micro-jet impingement cooling,” Int. J. Heat Mass Transf, vol. 51, no. 17-18, pp. 4342–4352, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.02.023.
  • A. M. Huber, and R. Viskanta, “Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets,” Int. J. Heat Mass Transf., vol. 37, no. 18, pp. 2859–2869, 1994. DOI: 10.1016/0017-9310(94)90340-9.
  • T. B. Hoberg, A. J. Onstad, and J. K. Eaton, “Heat transfer measurements for jet impingement arrays with local extraction,” Int. J. Heat Fluid Flow, vol. 31, no. 3, pp. 460–467, 2010. DOI: 10.1016/j.ijheatfluidflow.2010.01.009.
  • A. J. Onstad, C. J. Elkins, R. J. Moffat, and J. K. Eaton, “Full-field flow measurements and heat transfer of a compact jet impingement array with local extraction of spent fluid,” J. Heat Transf., vol. 131, no. 8, pp. 082201-1–8, 2009. DOI: 10.1016/j.jns.2003.09.014.
  • Y. Han, B. L. Lau, H. Zhang, and, and X. Zhang, “Package-level Si-based micro-jet impingement cooling solution with multiple drainage micro-trenches,” in Proc. of the 16th Electronics Packaging Technology Conference, EPTC 2014. 2014, pp. 330–334 DOI: 10.1109/EPTC.2014.7028284.
  • A. Husain, N. A. Al-Azri, N. Z. H. Al-Rawahi, and A. Samad, “Comparative performance analysis of microjet impingement cooling models with different spent-flow schemes,” J. Thermophys. Heat Transf., vol. 30, no. 2, pp. 466–472, 2016. DOI: 10.2514/1.T4577.
  • G. Natarajan, and R. J. Bezama, “Microjet cooler with distributed returns,” Heat Transf. Eng., vol. 28, no. 8–9, pp. 779–787, 2007. DOI: 10.1080/01457630701328627.
  • A. Rattner, “General characterization of jet impingement array heat sinks with interspersed fluid extraction ports for uniform high-flux cooling,” J. Heat Transf., vol. 139, no. 8, pp. 82201–82211, 2017. DOI: 10.1115/1.4036090.
  • C. S. Sharma et al., “Energy efficient hotspot-targeted embedded liquid cooling of electronics,” Appl. Energy, vol. 138, pp. 414–422, 2015. DOI: 10.1016/j.apenergy.2014.10.068.
  • D. H. Rhee, P. H. Yoon, and H. H. Cho, “Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air,” Int. J. Heat Mass Transf., vol. 46, no. 6, pp. 1049–1061, 2003. DOI: 10.1016/S0017-9310(02)00363-0.
  • T. W. Wei et al., “3D printed liquid jet impingement cooler: demonstration, opportunities and challenges,” in Proc. IEEE 68th Electronic Components and Technology Conf. San Diego, CA, USA, May 29-Jun. 1, 2018. DOI: 10.1109/ECTC.2018.00360.
  • H. Gong, M. Beauchamp, S. Perry, A. T. Woolley, and G. P. Nordin, “Optical approach to resin formulation for 3D printed microfluidics,” Rsc Adv., vol. 5, no. 129, pp. 106621–106632, 2015. DOI: 10.1039/C5RA23855B.
  • verson 5.0COMSOL Multiphysics. Stockholm, Sweden: Comsol, Inc., 2015.
  • S. Klein, Engineering Equation Solver. version 10, Madison, WI, USA: F-Chart Sofware, 2018.
  • I. E. Idel’chik, Handbook of Hydraulic Resistance. 3rd ed., Fort, Mumbai: Jaico, 2008.
  • Crane, Flow of Fluids through Valve Fittings and Pipes. New York, NY, USA: Crane Co, 1982.
  • S. Kakac, R. Shah, and W. Aung, Handbook of Single-Phase Convective Heat Transfer. 1st ed., New York, NY, USA: Wiley, 1987.
  • C. Lasance, “The thermal conductivity of unfilled plastics,” Electronics Cooling, 2001. [Online]. Available: https://www.electronics-cooling.com/2001/05/the-thermal-conductivity-of-unfilled-plastics/. [Accessed: 20-Feb-2019].
  • Y. A. Cengel, and A. J. Ghajar, “Chapter 8: Internal forced convection,” in Heat and Mass Transfer: Fundamentals & Applications. 6th ed. New York, NY, USA: McGraw-Hill Education, 2020, p. 509. (Table 8–1).
  • G. L. Morini, “Laminar-to-turbulent flow transition in microchannels,” Microscale Thermophys. Eng, vol. 8, no. 1, pp. 15–30, 2004. DOI: 10.1080/10893950490272902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.