375
Views
11
CrossRef citations to date
0
Altmetric
Articles

Experimental Study on the Influence of Metal Doping on Thermophysical Properties of Porous Aluminum Fumarate

, , , , &

References

  • B. Valizadeh, T. N. Nguyen and K. C. Stylianou, “Shape engineering of metal–organic frameworks,” Polyhedron, vol. 145, pp. 1–15, May 2018. DOI: 10.1016/j.poly.2018.01.004.
  • N. Tannert, et al., “Evaluation of the highly stable metal–organic framework MIL-53(Al)-TDC (TDC = 2,5-thiophenedicarboxylate) as a new and promising adsorbent for heat transformation applications,” J. Mater. Chem. A, vol. 6, no. 36, pp. 17706–17712, 2018. DOI: 10.1039/C8TA04407D.
  • D. Britt, H. Furukawa, B. Wang, T. G. Glover and O. M. Yaghi, “Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites,” Proc. Natl. Acad. Sci. U.S.A, vol. 106, no. 49, pp. 20637–20640, Dec. 2009. DOI: 10.1073/pnas.0909718106.
  • G. Li, S. Pang, Y. Wu and J. Ouyang, “Enhanced removal of hydroquinone by graphene aerogel-Zr-MOF with immobilized laccase,” Chem. Eng. Commun., vol. 205, no. 5, pp. 698–705, 2018. DOI: 10.1080/00986445.2017.1412313.
  • H. Kim, et al., “Water harvesting from air with metal-organic frameworks powered by natural sunlight,” Science, vol. 356, no. 6336, pp. 430–434, Apr. 2017. DOI: 10.1126/science.aam8743.
  • Y.-K. Seo, et al., “Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents,” Adv. Mater. Weinheim, vol. 24, no. 6, pp. 806–810, Feb. 2012. DOI: 10.1002/adma.201104084.
  • E. Elsayed, R. Al-Dadah, S. Mahmoud, P. Anderson and A. Elsayed, “Experimental testing of aluminum fumarate MOF for adsorption desalination,” Desalination, vol. 475, pp. 114170, Feb. 2020. DOI: 10.1016/j.desal.2019.114170.
  • M. V. Solovyeva, L. G. Gordeeva, T. A. Krieger and Y. I. Aristov, “MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption,” Energy Convers. Manag., vol. 174, pp. 356–363, Oct. 2018. DOI: 10.1016/j.enconman.2018.08.032.
  • J. J. Jenks, R. K. Motkuri, W. TeGrotenhuis, B. K. Paul and B. P. McGrail, “Simulation and experimental study of metal organic frameworks used in adsorption cooling,” Heat Transf. Eng., vol. 38, no. 14–15, pp. 1305–1315, 2017. DOI: 10.1080/01457632.2016.1242965.
  • O. K. Farha, et al., “ Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?” J. Am. Chem. Soc., vol. 134, no. 36, pp. 15016–15021, 2012. DOI: 10.1021/ja3055639.
  • T. H. Rupam, M. A. Islam, A. Pal, A. Chakraborty and B. B. Saha, “Thermodynamic property surfaces for various adsorbent/adsorbate pairs for cooling applications,” Int. J. Heat Mass Transf., vol. 144, pp. 118579, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118579.
  • V. Palomba, et al., “Latent thermal storage for solar cooling applications: materials characterization and numerical optimization of finned storage configurations,” Heat Transf. Eng., vol. 40, no. 12, pp. 1033–1048, 2019. DOI: 10.1080/01457632.2018.1451236.
  • B. Mu and K. S. Walton, “Thermal analysis and heat capacity study of metal–organic frameworks,” J. Phys. Chem. C, vol. 115, no. 46, pp. 22748–22754, 2011. DOI: 10.1021/jp205538a.
  • F. H. M. Azahar, et al., “Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles,” Appl. Therm. Eng., vol. 143, pp. 688–700, Oct. 2018. DOI: 10.1016/j.applthermaleng.2018.07.131.
  • B. B. Saha, I. I. El-Sharkawy, S. Koyama, J. B. Lee and K. Kuwahara, “Waste heat driven multi-bed adsorption chiller: heat exchangers overall thermal conductance on chiller performance,” Heat Transf. Eng., vol. 27, no. 5, pp. 80–87, 2006. DOI: 10.1080/01457630600560742.
  • M. A. Tadbir, E. Kjeang and M. Bahrami, “Thermal conductivity of microporous layers: Analytical modeling and experimental validation,” J. Power Sources, vol. 296, pp. 344–351, Nov. 2015. DOI: 10.1016/j.jpowsour.2015.07.054.
  • H. Babaei and C. E. Wilmer, “Mechanisms of heat transfer in porous crystals containing adsorbed gases: applications to metal-organic frameworks,” Phys. Rev. Lett., vol. 116, no. 2, pp. 25902, Jan. 2016. DOI: 10.1103/physrevlett.116.025902.
  • H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, no. 6149, pp. 1230444, Aug. 2013. DOI: 10.1126/science.1230444.
  • D. Zhao, D. J. Timmons, D. Yuan and H.-C. Zhou, “Tuning the topology and functionality of metal-organic frameworks by ligand design,” Acc. Chem. Res., vol. 44, no. 2, pp. 123–133, 2011. DOI: 10.1021/ar100112y.
  • C. Wang, D. Liu and W. Lin, “ Metal-organic frameworks as a tunable platform for designing functional molecular materials,” J. Am. Chem. Soc., vol. 135, no. 36, pp. 13222–13234, 2013. DOI: 10.1021/ja308229p.
  • A. Mavrandonakis, E. Tylianakis, A. K. Stubos and G. E. Froudakis, “Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study,” J. Phys. Chem. C, vol. 112, no. 18, pp. 7290–7294, 2008. DOI: 10.1021/jp7102098.
  • C. T. Lollar, et al., “Interior decoration of stable metal-organic frameworks,” Langmuir, vol. 34, no. 46, pp. 13795–13807, 2018. DOI: 10.1021/acs.langmuir.8b00823.
  • H. W. B. Teo, A. Chakraborty and S. Kayal, “Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption,” Appl. Therm. Eng., vol. 120, pp. 453–462, Jun. 2017. DOI: 10.1016/j.applthermaleng.2017.04.018.
  • M. L. Palash, I. Jahan, T. H. Rupam, S. Harish and B. B. Saha, “Novel technique for improving the water adsorption isotherms of metal-organic frameworks for performance enhancement of adsorption driven chillers,” Inorganica Chim. Acta, vol. 501, pp. 119313, Feb. 2020. DOI: 10.1016/j.ica.2019.119313.
  • “Thermal Analysis Instruments 60 Series,” 2012. Available: http://www.shimadzu.com/an/. Accessed: Feb. 10, 2020.
  • M. A. Islam, A. Pal and B. B. Saha, “Experimental study on thermophysical and porous properties of silica gels,” Int. J. Refrig., vol. 110, pp. 277–285, Feb. 2020. DOI: 10.1016/j.ijrefrig.2019.10.027.
  • A. Pal, K. Uddin, K. Thu and B. B. Saha, “Activated carbon and graphene nanoplatelets based novel composite for performance enhancement of adsorption cooling cycle,” Energy Convers. Manag., vol. 180, pp. 134–148, Jan. 2019. DOI: 10.1016/j.enconman.2018.10.092.
  • W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys., vol. 32, no. 9, pp. 1679–1684, 1961. DOI: 10.1063/1.1728417.
  • H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. New York, NY, USA: Clarendon Press, 1959, pp. 99.
  • D. W. Green, R. H. Perry and J. O. Maloney, Perry’s Chemical Engineer’s Handbook, 7th ed. New York, NY, USA: McGraw-Hill Publishing Company, 1997, pp. 164.
  • P. D. Desai, “Thermodynamic properties of nickel,” Int. J. Thermophys., vol. 8, no. 6, pp. 763–780, Nov. 1987. DOI: 10.1007/BF00500793.
  • K. Thurnay, Thermal Properties of Transition Metals. Karlsruhe, Germany: Karlsruhe FZKA, 1998, pp. 60. DOI: 10.5445/ir/270043419.
  • J. G. Park, et al., “Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1,2,3-triazolate)2(BF4)x,” J. Am. Chem. Soc., vol. 140, no. 27, pp. 8526–8534, 2018. DOI: 10.1021/jacs.8b03696. [https://doi.org/29893567]
  • M. K. Oskouei and Z. T. Telto, “Effect of packing density on thermal properties of granular activated carbon packed bed by using of inverse heat conduction method,” Proceeding of 10th Int. Conf. Heat Transf. Fluid Mech. Thermodyn, Orlando, Florida, July 13–15, 2014, pp. 944–948.
  • B. Jha and D. N. Singh, Fly Ash Zeolites: Innovations, Applications, and Directions. Singapore: Springer Nature, 2018, pp. 18–19. DOI: 10.1007/978-981-10-1404-8.
  • A. Sharafian, K. Fayazmanesh, C. McCague and M. Bahrami, “Thermal conductivity and contact resistance of mesoporous silica gel adsorbents bound with polyvinylpyrrolidone in contact with a metallic substrate for adsorption cooling system applications,” Int. J. Heat Mass Transf., vol. 79, pp. 64–71, Dec. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.