409
Views
11
CrossRef citations to date
0
Altmetric
Articles

Experimental Study of a Thermoelectric Air Duct Dehumidification System for Tropical Climate

, , , , , & show all

References

  • Y. Belyayev, M. Mohanraj, S. Jayaraj and A. Kaltayev, “Thermal performance simulation of a heat pump assisted solar desalination system for Kazakhstan climatic conditions,” Heat Transf. Eng., vol. 40, no. 12, pp. 1060–1072, 2019. DOI: 10.1080/01457632.2018.1451246.
  • N. Ismail, N. Ghaddar and K. Ghali, “A clothing ventilation and heat loss electric circuit model with natural convection for a clothed swinging arm of a walking human,” Heat Transf. Eng., vol. 40, no. 3–4, pp. 330–345, 2019. DOI: 10.1080/01457632.2018.1429055.
  • A. H. Araghi, M. Khiadani, K. Hooman and G. Lucas, “Efficiency of a combined desalination and power system utilizing a two-phase flow multistream heat exchanger,” Heat Transf. Eng., vol. 38, no. 11–12, pp. 1000–1007, 2017. DOI: 10.1080/01457632.2016.1216939.
  • P. S. Goh, A. F. Ismail and T. Matsuura, “Perspective and roadmap of energy-efficient desalination integrated with nanomaterials,” Sep. Purif. Rev., vol. 47, no. 2, pp. 124–141, 2018. DOI: 10.1080/15422119.2017.1335214.
  • Y. Wada, “Modeling groundwater depletion at regional and global scales: present state and future prospects,” Surv. Geophys., vol. 37, no. 2, pp. 419–451, 2016. DOI: 10.1007/s10712-015-9347-x.
  • J. Zhang, A. Gupta and J. Baker, “Effect of relative humidity on the prediction of natural convection heat transfer coefficients,” Heat Transf. Eng., vol. 28, no. 4, pp. 335–342, 2007. DOI: . DOI: 10.1080/01457630601122823.
  • M. Kumar, A. Yadav and N. Mehla, “Water generation from atmospheric air by using different composite desiccant materials,” Int. J. Ambient Energy, vol. 40, no. 4, pp. 343–349, 2019. DOI: 10.1080/01430750.2017.1392350.
  • Y. Liu, L. Jin, Y. Li, X. Yang, X. Meng and L. Zhang, “Experimental and numerical study on heat and mass transfer of cross-flow liquid desiccant dehumidifier/regenerator,” Heat Transf. Eng., vol. 41, no. 9–10, pp. 867–881, 2020. DOI: 10.1080/01457632.2019.1576436.
  • F. Y. Zhao, L. Li, D. Liu, J. T. Hu and H. Q. Wang, “Thermal and moisture transport inhibitions in a moist air saturated enclosure attached with protruding partitions for built energy conservations,” Heat Transf. Eng., vol. 39, no. 20, pp. 1727–1748, 2018. DOI: 10.1080/01457632.2017.1388901.
  • M. Doctor-Pingel, H. Lavocat and N. Bhavaraju, “Performance of naturally ventilated buildings in a warm-humid climate: A case study of Golconde Dormitories, South India,” Archit. Sci. Rev., vol. 60, no. 3, pp. 205–214, 2017. DOI: 10.1080/00038628.2017.1300133.
  • N. Panigrahi, K. Venkatesan and M. Venkata Ramanan, “Performance study of thermoelectric cooler using multiphysics simulation and numerical modelling,” Int. J. Ambient Energy, vol. 16, pp. 1–7, May 2019. DOI: 10.1080/01430750.2019.1611655.
  • M. Eslami, F. Tajeddini and N. Etaati, “Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers,” Energy Convers. Manag., vol. 174, pp. 417–429, Oct. 2018. DOI: 10.1016/j.enconman.2018.08.045.
  • S. Suryaningsih and O. Nurhilal, “Optimal design of an atmospheric water generator (AWG) based on thermo-electric cooler (TEC) for drought in rural area,” presented at the 2nd Padja Int. Phys. Symp., Jatinangor, Indonesia, Sept. 2, 2015. DOI: 10.1063/1.4941874.
  • C. Yildirim, S. K. Soylu, I. Atmaca and I. Solmuş, “Experimental investigation of a portable desalination unit configured by a thermoelectric cooler,” Energy Convers. Manag., vol. 85, pp. 140–145, June 2014. DOI: 10.1016/j.enconman.2014.05.071.
  • J. G. Vián, D. Astrain and M. Domínguez, “Numerical modelling and a design of a thermoelectric dehumidifier,” Appl. Therm. Eng., vol. 22, no. 4, pp. 407–422, 2002. DOI: 10.1016/S1359-4311(01)00102-8.
  • R. M. Atta, “Solar thermoelectric cooling using closed loop heat exchangers with macro channels,” Heat Mass Transfer, vol. 53, no. 7, pp. 2241–2254, Jan. 2017. DOI: . DOI: 10.1007/s00231-017-1965-z.
  • D. Milani, A. Abbas, A. Vassallo, M. Chiesa and D. A. Bakri, “Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air,” Chem. Eng. Sci., vol. 66, no. 12, pp. 2491–2501, 2011. DOI: 10.1016/j.ces.2011.02.018.
  • J. A. Esfahani, N. Rahbar and M. Lavvaf, “Utilization of thermoelectric cooling in a portable active solar still - An experimental study on winter days,” Desalination, vol. 269, no. 1–3, pp. 198–205, 2011. DOI: 10.1016/j.desal.2010.10.062.
  • M. Jradi, N. Ghaddar and K. Ghali, “Experimental and theoretical study of an integrated thermoelectric-photovoltaic system for air dehumidification and fresh water production,” Int. J. Energy Res., vol. 36, no. 9, pp. 963–974, 2012. DOI: 10.1002/er.1848.
  • F. L. Tan and S. C. Fok, “Experimental testing and evaluation of parameters on the extraction of water from air using thermoelectric coolers,” J. Test. Eval., vol. 41, no. 1, pp. 96–103, 2013. DOI: 10.1520/JTE20120105.
  • Y. Yao, et al., “Optimization design and experimental study of thermoelectric dehumidifier,” Appl. Therm. Eng., vol. 123, pp. 820–829, Aug. 2017. DOI: 10.1016/j.applthermaleng.2017.05.172.
  • S. Liu, et al., “Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method,” Energy Procedia, vol. 142, pp. 1609–1614, Dec. 2017. DOI: 10.1016/j.egypro.2017.12.538.
  • A. H. Shourideh, W. Bou Ajram, J. Al Lami, S. Haggag and A. Mansouri, “A comprehensive study of an atmospheric water generator using Peltier effect,” Therm. Sci. Eng. Prog., vol. 6, pp. 14–26, June 2018. DOI: 10.1016/j.tsep.2018.02.015.
  • H. Sadighi Dizaji, S. Jafarmadar, S. Khalilarya and A. Moosavi, “An exhaustive experimental study of a novel air-water based thermoelectric cooling unit,” Appl. Energy, vol. 181, pp. 357–366, Aug. 2016. DOI: 10.1016/j.apenergy.2016.08.074.
  • Z. Liu, L. Zhang and G. Gong, “Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system,” Energy Convers. Manag., vol. 87, no. 1, pp. 559–565, 2014. DOI: 10.1016/j.enconman.2014.07.051.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 8th ed. New York: McGraw Hill, 2015.
  • A. Bejan, Advanced Engineering Thermodynamics. Hoboken, New Jersey: Wiley, 2016.
  • K. Irshad, K. Habib, N. Thirumalaiswamy and B. B. Saha, “Performance analysis of a thermoelectric air duct system for energy-efficient buildings,” Energy, vol. 91, pp. 1009–1017, Nov. 2015. DOI: 10.1016/j.energy.2015.08.102.
  • K. Irshad, K. Habib, S. Algarni, B. B. Saha and B. Jamil, “Sizing and life-cycle assessment of building integrated thermoelectric air cooling and photovoltaic wall system,” Appl. Therm. Eng., vol. 154, pp. 302–314, May 2019. DOI: 10.1016/j.applthermaleng.2019.03.027.
  • K. Irshad, K. Habib, F. Basrawi, N. Thirumalaiswamy, R. Saidur and B. B. Saha, “Thermal comfort study of a building equipped with thermoelectric air duct system for tropical climate,” Appl. Therm. Eng., vol. 91, pp. 1141–1155, Dec. 2015. DOI: 10.1016/j.applthermaleng.2015.08.077.
  • K. Irshad, et al., “Microclimate thermal management using thermoelectric air-cooling duct system operated at five incremental powers and its effect on sleep adaptation of the occupants,” Energies, vol. 12, no. 19, pp. 3695, Sept. 2019. DOI: 10.3390/en12193695.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.