396
Views
15
CrossRef citations to date
0
Altmetric
Articles

Effect of ZrO2 Nanoparticle Deposited Layer on Pool Boiling Heat Transfer Enhancement

, , , &

References

  • G. S. Guthridge, “Understanding consumer preferences in energy efficiency: Accenture end-consumer observatory on electricity management”, Accenture, Dublin, Ireland, Tech. Rep. ACC10-0229, 2010. Available: https://www.accenture.com
  • H. S. Ahn, et al., “Pool boiling experiments on multi-walled carbon nanotube (MWCNT) forests,” J. Heat Transfer, vol. 128, no. 12, pp. 1335–1342, Dec. 2006. 2349511 DOI: 10.1115/1.
  • Y. A. Cengel, and and A. J. Ghajar, Heat and Mass Transfer, Fundamentals and Applications, 6th ed. New York: McGraw – Hill Education, 2020.
  • I. L. Pioro, W. Rohsenow and S. S. Doerffer, “Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface,” Int. J. Heat Mass Transfer, vol. 47, no. 23, pp. 5033–5044, Nov. 2004. ansfer.2004.06.019 DOI: 10.1016/j.ijheatmasstr.
  • S. J. Kim, I. C. Bang, J. Buongiorno and L. W. Hu, “Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids,” Appl. Phys. Lett., vol. 89, no. 15, pp. 153107–153109, Aug. 2006. DOI: 10.1063/1.2360892.
  • S. J. Kim, I. C. Bang, J. Buongiorno and L. W. Hu, “Study of pool boiling and critical heat flux enhancement in nanofluids,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 55, no. 2, pp. 211–216, June 2007.
  • S. J. Kim, “Pool boiling heat transfer characteristics of nanofluids,” Doctoral dissertation, Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2007. http://hdl.handle.net/1721.1/41306.
  • V. Nikkhah and S. H. Nakhjavani, “Thermal performance of a micro heat exchanger (MHE) working with zirconia-based nanofluids for industrial cooling,” Int. J. Ind. Chem., vol. 10, no. 2, pp. 193–204, June 2019. DOI: 10.1007/s40090-019-0183-6.
  • S. Iqbal, C. Raj, J. Michael and A. Irfan, “A comparative investigation of Al2O3/H2O, SiO2/H2O and ZrO2/H2O nanofluid for heat transfer applications,” Dig. J. Nanomater. Bios, vol. 12, no. 2, pp. 255–263, 2017. vol April - June
  • S. Sadhu and P. S. Ghoshdastidar, “Heat flux controlled pool boiling of zirconia–water and silver–water nanofluids on a flat plate: A coupled map lattice simulation,” J. Heat Transfer, vol. 137, no. 2, pp. 021503–021511, Feb. 2015. DOI: 10.1115/1.40.28974
  • M. Chopkar, P. K. Das and I. Manna, “Thermal characterization of a nanofluid comprising nanocrystalline ZrO2 dispersed in water and ethylene glycol,” Philos. Mag., vol. 87, no. 29, pp. 4433–4444, Sep. 2007. DOI: 10.10801478643070153277.
  • M. Chopkar, A. K. Das, I. Manna and P. K. Das, “Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool,” Heat Mass Transfer, vol. 44, no. 8, pp. 999–1004, June 2008. [Mismatch] DOI: 10.1007/s00231-007-0345-5.
  • M. M. Sarafraz, T. Kiani and F. Hormozi, “Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids,” Int. Commun. Heat Mass Transf., vol. 70, pp. 75–83, Jan. 2016. DOI: 10.1016/j.icheatmasstransfer.2015.12.008.
  • D. Ciloglu, “An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface,” Heat Transfer Eng., vol. 38, no. 10, pp. 919–930, Jan. 2017. DOI: 10.1080/01457632.2016.1212571.
  • S. Mori, S. Mt. Aznam, R. Yanagisawa, F. Yokomatsu and K. Okuyama, “Measurement of a Heated surface temperature using a high-speed infrared camera during critical heat flux enhancement by a honeycomb porous plate in a saturated pool boiling of a nanofluid,” Heat Transfer Eng., pp. 1–17, July 2019. DOI: 10.1080/01457632.2019.1628487.
  • M. R. Salimpour, A. Abdollahi and M. Afrand, “An experimental study on deposited surfaces due to nanofluid pool boiling: Comparison between rough and smooth surfaces,” Exp. Therm. Fluid Sci., vol. 88, pp. 288–300, Nov. 2017. DOI: 10.1016/j.expthermflusci.2017.06.007.
  • A. S. Surtaev, V. S. Serdyukov and A. N. Pavlenko, “Nanotechnologies for thermo physics: Heat transfer and crisis phenomena at boiling,” Nanotechnol. Russia, vol. 11, no. 11–12, pp. 696–715, Nov. 2016. DOI: 10.1134/S1995078016060197.
  • A. Jaikumar, S. G. Kandlikar and A. Gupta, “Pool boiling enhancement through graphene and graphene oxide coatings,” Heat Transfer Eng., vol. 38, no. 14–15, pp. 1274–1284, Mar. 2017. DOI: 10.1080/01457632.2016.1242959.
  • S. S. Gajghate, S. Barathula, S. Das, B. B. Saha and S. Bhaumik, “Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface,” J. Therm. Anal. Calorim., vol. 140, pp. 1393–1411, Sep. 2019. DOI: 10.1007/s10973-019-087405.
  • A. Bhise, S. S. Gajghate, S. Bhaumik, and S. Das, “Effect of Graphene Coated Surface on Pool Boiling Heat Transfer by Spin Coating Method,” Proc. 24th National and 2nd Inter. ISHMT-ASTFE Heat and Mass Transf. Conf, pp. 1621–1627, BITS Pilani, Dec. 27–30, Hyderabad, Telangana, India, 2017. DOI: 10.1615/IHMTC-2017.2250.
  • A. Gupta, A. Jaikumar, S. G. Kandlikar, A. Rishi and A. Layman, “A multiscale morphological insight into graphene based coatings for pool boiling applications,” Heat Transfer Eng., vol. 39, no. 15, pp. 1331–1343, Sep2018. 66228 DOI: 10.1080/01457632.2017.13.
  • H. Yeom, S. Kumar and C. Michael, “Bubble dynamics in pool boiling on nanoparticle-coated surfaces,” Heat Transfer Eng., vol. 36, no. 12, pp. 1013–1027, Nov. 2015. DOI: 10.1080/01457632.2015.979116.
  • M. M. Rahman and M. McCarthy, “Boiling enhancement on nanostructured surfaces with engineered variations in wettability and thermal conductivity,” Heat Transfer Eng., vol. 38, no. 14–15, pp. 1285–1295, Mar. 2017. DOI: 10.1080/01457632.2016.1242961.
  • Z. Sun, C. Xiaodan and Q. Huihe, “Bubble dynamics and heat transfer during pool boiling on wettability patterned surfaces,” Heat Transfer Eng., vol. 39, no. 7–8, pp. 663–671, July 2018. DOI: 10.1080/01457632.2017.1325676.
  • M. S. El-Genk, “Nucleate boiling enhancements on porous graphite and microporous and macro–finned copper surfaces,” Heat Transfer Eng., vol. 33, no. 3, pp. 175–204, Oct. 2012. DOI: 10.1080/01457632.2011.589305.
  • M. Ray and S. Bhaumik, “Nucleate pool boiling heat transfer of hydro-fluorocarbon refrigerant R134a on TiO2 nanoparticle coated copper heating surfaces,” Heat Transfer Eng., vol. 40, no. 12, pp. 997–1006, Mar 2019. DOI: 10.1080/01457632.2018.1450333.
  • A. M. Gheitaghy, H. Saffari and G. Q. Zhang, “Effect of nanostructured microporous surfaces on pool boiling augmentation,” Heat Transfer Eng., vol. 40, no. 9–10, pp. 762–771, Mar 2019. DOI: 10.1080/01457632.2018.1442310.
  • F. Zhang and A. Jacobi, “Nanoparticle deposition by boiling on aluminum surfaces to enhance wettability,” Proc. 15th Inter. Conf. Refrig. and Air Conditioning, pp. 2397–2405, Purdue University, July 14–17, West Lafayette, Indiana, USA, 2014. http://docs.lib.purdue.edu/iracc/1468.
  • F. Zhang and A. Jacobi, “Metal surface wettability manipulation by nanoparticle deposition during nanofluid boiling,” Proc. of ASME 13th Inter. Conf. on Nanochannels, Microchannels and Minichannels pp. 25–31, San Francisco, California, USA, July 6–9, 2015. 87 DOI: 10.1115/ICNMM2015-486.
  • S. Khan, M. Atieh and M. Koç, “Micro-nano scale surface coating for nucleate boiling heat transfer: Critical review,” Energies, vol. 11, no. 11, pp. 3189–3218, Nov. 2018. DOI: 10.33.
  • R. L. Webb, “Nucleate boiling on porous coated surfaces,” Heat Transfer Eng., vol. 4, no. 3–4, pp. 71–82, 1983. DOI: 10.1080/01457638108939610.
  • H. Jo, H. S. Ahn, S. Kang and M. H. Kim, “A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,” Int. J. Heat Mass Transfer, vol. 54, no. 25–26, pp. 5643–5652, Dec. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.001.
  • F. Zhang, et al., “Application of zirconia thermal barrier coating on the surface of pulling-straightening roller,” Int. J. Heat Technol., vol. 35, no. 4, pp. 765–772, Dec. 2017. 280/ijht.350410 DOI: 10.18.
  • S. Jayakumar et al., “Characterization of nano-crystalline ZrO2 synthesized via reactive plasma processing,” Mater. Sci. Eng. B, vol. 176, no. 12, pp. 894–899, July 2011. DOI: 10.1016/j.mseb.2011.05.013
  • S. F. Mansour, S. I. El-Dek and M. K. Ahmed, “Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals,” Sci. Rep., vol. 7, pp. 43202–43222, Mar 2017. DOI: 10.1038/srep43202.
  • M. Abdullah et al., “Sedimentation and stabilization of nano-fluids with dispersant,” Colloid Surf. A Physicochem. Eng. Asp., vol. 554, pp. 86–92, Oct. 2018. a.2018.06.030 DOI: 10.1016/j.colsurf.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • I. M. Monirul, et al., “Assessment of performance, emission and combustion characteristics of palm, jatropha and calophyllum inophyllum biodiesel blends,” Fuel, vol. 181, pp. 985–995, Oct. 2016. DOI: 10.1016/j.fuel.2016.05.010.
  • A. Jaikumar, “Multiscale mechanistic approach to enhance pool boiling performance for high heat flux applications,” PhD Thesis, Dept. Microsystems Engg., Rochester Institute of Technology, Rochester NY, 2017. https://scholarworks.rit.edu/theses/9636/.
  • S. Das, B. Saha and S. Bhaumik, “Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure,” Appl. Therm. Eng., vol. 113, pp. 1345–1357, Feb. 2017. DOI: 10.1016/j.applthermaleng.2016.11.135.
  • C. Suryanarayana, and and M. G. Norton, X-Ray Diffraction: A Practical Approach. Berlin: Springer, 2013, ISBN 978-1-4899-0148-4
  • Y. C. Kim, “Effect of surface roughness on pool boiling heat transfer in subcooled water-CuO nanofluid,” J. Mech. Sci. Technol., vol. 28, no. 8, pp. 3371–3376, April 2014. 7/s12206-014-0749-3 DOI: 10.100.
  • J. Kim, S. Jun, J. Lee and S. M. You, “Effect of surface roughness on pool boiling heat transfer of water on a superhydrophilic aluminum surface,” J. Heat Transfer, vol. 139, no. 10, pp. 101501–101509, Oct. 2017. DOI: 10.1115/1.4036599.
  • N. S. Dhillon, “Effect of surface roughness on the behavior of bubbles growing and departing from a heated surface,” Proc. ASME 2017 Heat Transfer Summer Conf, pp. V002T14A010–17, Bellevue, Washington, USA, July 9–12, 2017. DOI: 10.1115/HT2017-5113.
  • W. Zhong, “Surface tension, wetting and wicking,” in Thermal and Moisture Transport in Fibrous Materials, 1st ed., N. Pan and P. Gibson, Eds. Cambridge, UK: Woodhead, 2006, pp. 136–155. ISBN: 9781845690571
  • C. Xue et al., “Water droplet spreading and wicking on nanostructured surfaces,” Langmuir, vol. 33, no. 27, pp. 6701–6707, June 2017. DOI: 10.1021/acs.langmuir.7b01223.
  • H. T. Phan, N. Caney, P. Marty, S. Colasson and J. Gavillet, “Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,” Int. J. Heat Mass Transfer, vol. 52, no. 23–24, pp. 5459–5471, Nov. 2009. fer.2009.06.032 DOI: 10.1016/j.ijheatmasstrans.
  • E. Nowak, G. Combes, E. H. Stitt and A. W. Pacek, “A comparison of contact angle measurement techniques applied to highly porous catalyst supports,” Powder Technol., vol. 233, pp. 52–64, Jan. 2013. DOI: 10.1016/j.powtec.2012.08.032.
  • D. H. Prajitno, A. Maulana and D. G. Syarif, “Effect of surface roughness on contact angle measurement of nanofluid on surface of stainless steel 304 by sessile drop method,” J. Phys. Conf. Ser., vol. 739, no. 1, pp. 012029–012033, 2016. DOI: 10.1088/1742-6596/739/1/012029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.