376
Views
8
CrossRef citations to date
0
Altmetric
Articles

Numerical Study on Nitric Oxide Production of Moderate or Intense Low-Oxygen Dilution Combustion Using Ammonia and City Gas

, &

References

  • Y. Nojiri, et al., “National greenhouse gas inventory report of Japan,” Tsukuba, 2019. [Online]. Available: http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf. Accessed: Apr. 19, 2020.
  • T. Honzawa, R. Kai, A. Okada, A. Valera-Medina, P. J. Bowen and R. Kurose, “Predictions of NO and CO emissions in ammonia/methane/air combustion by LES using a non-adiabatic flamelet generated manifold,” Energy, vol. 186, pp. 115771, Nov. 2019. DOI: 10.1016/j.energy.2019.07.101.
  • O. Kurata, et al., “Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations,” Proc. Combust. Inst., vol. 36, no. 3, pp. 3351–3359, 2017. DOI: 10.1016/j.proci.2016.07.088.
  • A. Valera-Medina, et al., “Ammonia–methane combustion in tangential swirl burners for gas turbine power generation,” Appl. Energy, vol. 185, no. 2, pp. 1362–1371, 2017. DOI: 10.1016/j.apenergy.2016.02.073.
  • H. Kobayashi, A. Hayakawa, K. D. Kunkuma, A. Somarathne and E. C. Okafor, “Science and technology of ammonia combustion,” Proc. Combust. Inst., vol. 37, no. 1, pp. 109–133, 2019. DOI: 10.1016/j.proci.2018.09.029.
  • S. J. Yang, H. Jung, T. Kim and C. R. Park, “Recent advances in hydrogen storage technologies based on nanoporous carbon materials,” Prog. Nat. Sci. Mater. Int., vol. 22, no. 6, pp. 631–638, 2012. DOI: 10.1016/j.pnsc.2012.11.006.
  • J. Li, H. Huang, N. Kobayashi, Z. He and Y. Nagai, “Study on using hydrogen and ammonia as fuels: Combustion characteristics and NOxformation,” Int. J. Energy Res., vol. 38, no. 9, pp. 1214–1223, 2014. DOI: 10.1002/er.3141.
  • J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki and K. Yamada, “Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion,” Int. J. Hydrogen Energy, vol. 43, no. 5, pp. 3004–3014, 2018. DOI: 10.1016/j.ijhydene.2017.12.066.
  • H. Nozari and A. Karabeyoğlu, “Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms,” Fuel, vol. 159, pp. 223–233, July 2015. DOI: 10.1016/j.fuel.2015.06.075.
  • A. Cavaliere and M. de Joannon, “Mild combustion,” Prog. Energy Combust. Sci., vol. 30, no. 4, pp. 329–366, 2004. DOI: 10.1016/j.pecs.2004.02.003.
  • J. Wünning, “Flameless oxidation to reduce thermal no-formation,” Prog. Energy Combust. Sci., vol. 23, no. 1, pp. 81–94, 1997. DOI: 10.1016/S0360-1285(97)00006-3.
  • H. Tsuji, A. K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, and and M. Morita, “High temperature air combustion,” in Energy Conservation to Pollution Reduction. Boca Raton: CRC Press, 2002. DOI: 10.1201/9781420041033.
  • R. Ben-Mansour, M. A. Habib, M. A. Nemitallah, M. Rajhi and K. A. Suara, “Characteristics of oxyfuel and air–fuel combustion in an industrial water tube boiler,” Heat Transfer Eng., vol. 35, no. 16–17, pp. 1394–1404, 2014. DOI: 10.1080/01457632.2014.888920.
  • G. Wołkowycki, “Experimental results on the fixed matrix regenerator effectiveness for a glass stove furnace,” Heat Transfer Eng., vol. 37, no. 6, pp. 591–602, 2016. DOI: 10.1080/01457632.2015.1060780.
  • F. Hu, et al., “Global reaction mechanisms for MILD oxy-combustion of methane,” Energy, vol. 147, pp. 839–857, March 2018. DOI: 10.1016/j.energy.2018.01.089.
  • G. Bagheri, E. Ranzi, M. Pelucchi, A. Parente, A. Frassoldati and T. Faravelli, “Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane,” Combust. Flame, vol. 212, pp. 142–155, Feb. 2020. DOI: 10.1016/j.combustflame.2019.10.014.
  • Y. Tu, M. Xu, D. Zhou, Q. Wang, W. Yang and H. Liu, “CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres,” Appl. Energy, vol. 240, pp. 1003–1013, April 2019. DOI: 10.1016/j.apenergy.2019.02.046.
  • G. Wang, J. Si, M. Xu and J. Mi, “MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow,” Energy, vol. 187, pp. 115934, Nov. 2019. DOI: 10.1016/j.energy.2019.115934.
  • A. Mardani and H. Karimi Motaalegh Mahalegi, “Hydrogen enrichment of methane and syngas for MILD combustion,” Int. J. Hydrogen Energy, vol. 44, no. 18, pp. 9423–9437, 2019. DOI: 10.1016/j.ijhydene.2019.02.072.
  • ANSYS CHEMKIN-PRO, version 17.2, Canonsburg, PA: ANSYS Inc., 2016.
  • E. C. Okafor, et al., “Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames,” Combust. Flame, vol. 187, pp. 185–198, Jan. 2018. DOI: 10.1016/j.combustflame.2017.09.002.
  • Z. Tian, Y. Li, L. Zhang, P. Glarborg and F. Qi, “An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure,” Combust. Flame, vol. 156, no. 7, pp. 1413–1426, 2009. DOI: 10.1016/j.combustflame.2009.03.005.
  • University of California at San Diego, “Chemical-kinetic mechanisms for combustion applications”, Mechanical and Aerospace Engineering (Combustion Research), San Diego, CA, USA. [Online]. Available: https://web.eng.ucsd.edu/mae/groups/combustion/sdmech/sandiego20161214/sandiego20161214_mechCK.txt. Accessed: Apr. 19, 2020.
  • University of California at San Diego, “Chemical-kinetic mechanisms for combustion applications”, Mechanical and Aerospace Engineering (Combustion Research), San Diego, CA, USA. [Online]. Available: https://web.eng.ucsd.edu/mae/groups/combustion/sdmech/sandiego_nitrogen/NOx_20180723/NOXsandiego20180723_mechCK.txt. Accessed: Apr. 19, 2020.
  • O. Mathieu and E. L. Petersen, “Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry,” Combust. Flame, vol. 162, no. 3, pp. 554–570, 2015. DOI: 10.1016/j.combustflame.2014.08.022.
  • H. Nakamura and S. Hasegawa, “Combustion and ignition characteristics of ammonia/air mixtures in a micro flow reactor with a controlled temperature profile,” Proc. Combust. Inst., vol. 36, no. 3, pp. 4217–4226, 2017. DOI: 10.1016/j.proci.2016.06.153.
  • G. P. Smith, et al., GRI-Mech 3.0, Berkeley, CA, USA: Gas Research Institute. [Online]. Available: http://www.me.berkeley.edu/gri_mech/. Accessed: Apr. 19, 2020.
  • ANSYS FLUENT, version 17.2, Canonsburg, PA: ANSYS Inc., 2016.
  • T. Ishii, C. Zhang and Y. Hino, “Numerical study of the performance of a regenerative furnace,” Heat Transfer Eng., vol. 23, no. 4, pp. 23–33, 2002. DOI: 10.1080/01457630290090473.
  • T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, “A new k-ϵ eddy viscosity model for high reynolds number turbulent flows,” Comput. Fluids, vol. 24, no. 3, pp. 227–238, 1995. DOI: 10.1016/0045-7930(94)00032-T.
  • B. F. Magnussen, “On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow,” presented at the American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, St. Louis, Mo, Jan. 12–15, 1981. DOI: 10.2514/6.1981-42.
  • T. F. Smith, Z. F. Shen and J. N. Friedman, “Evaluation of coefficients for the weighted sum of Gray gases model,” J. Heat Transfer, vol. 104, no. 4, pp. 602–608, 1982. DOI: 10.1115/1.3245174.
  • A. Coppalle and P. Vervisch, “The total emissivities of high-temperature flames,” Combust. Flame, vol. 49, no. 1–3, pp. 101–108, 1983. DOI: 10.1016/0010-2180(83)90154-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.