265
Views
5
CrossRef citations to date
0
Altmetric
Articles

Off-Design Analysis of a Supercritical CO2 Brayton Cycle with Ambient Air as the Cold Source Driven by Waste Heat from Gas Turbine

, , , , , & show all

References

  • Y. Cao and Y. P. Dai, “Comparative analysis on off-design performance of a gas turbine and ORC combined cycle under different operation approaches,” Energy Convers. Manag., vol. 135, pp. 84–100, Mar. 2017. DOI: 10.1016/j.enconman.2016.12.072.
  • C. Carcasci, R. Ferraro, and E. Miliotti, “Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines,” Energy, vol. 65, no. 1, pp. 91–100, Feb. 2014. DOI: 10.1016/j.energy.2013.11.080.
  • X. L. Zhou, P. Cui, and W. K. Zhang, “Thermal and exergy analysis of an organic Rankine cycle power generation system with refrigerant R245fa,” Heat Transf. Eng., vol. 41, no. 9–10, pp. 905–918, May 2020. DOI: 10.1080/01457632.2019.1576824.
  • Y. P. Dai, D. S. Hu, Y. Wu, Y. K. Gao, and Y. Cao, “Comparison of a basic organic Rankine cycle and a parallel double-evaporator organic Rankine cycle,” Heat Transf. Eng., vol. 38, no. 11–12, pp. 990–999, Jan. 2017. DOI: 10.1080/01457632.2016.1216938.
  • D. S. Hu, S. L. Li, Y. Zheng, J. F. Wang, and Y. P. Dai, “Preliminary design and off-design performance analysis of an Organic Rankine cycle for geothermal sources,” Energy Convers. Manag., vol. 96, pp. 175–187, May 2015. DOI: 10.1016/j.enconman.2015.02.078.
  • M. N. Khan and I. Tlili, “Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis,” Energy Rep., vol. 4, pp. 497–506, Nov. 2018. DOI: 10.1016/j.egyr.2018.07.007.
  • H. Nami, S. M. S. Mahmoudi, and A. Nemati, “Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2),” Appl. Therm. Eng., vol. 110, pp. 1315–1330, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.08.197.
  • Y. Cao, J. Q. Ren, Y. Q. Sang, and Y. P. Dai, “Thermodynamic analysis and optimization of a gas turbine and cascade CO2 combined cycle,” Energy Convers. Manag., vol. 144, pp. 193–204, Jul. 2017. DOI: 10.1016/j.enconman.2017.04.066.
  • H. T. Walnum, P. Nekså, L. O. Nord, and T. Andresena, “Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions,” Energy, vol. 59, pp. 513–520, Sep. 2013. DOI: 10.1016/j.energy.2013.06.071.
  • S. Y. Hou, Y. D. Zhou, L. J. Yu, F. Y. Zhang, and S. Cao, “Optimization of the combined supercritical CO2 cycle and organic Rankine cycle using zeotropic mixtures for gas turbine waste heat recovery,” Energy Convers. Manag., vol. 160, pp. 313–325, Mar. 2018. DOI: 10.1016/j.enconman.2018.01.051.
  • S. Y. Hou, Y. D. Wu, Y. D. Zhou, and L. J. Yu, “Performance analysis of the combined supercritical CO2 recompression and regenerative cycle used in waste heat recovery of marine gas turbine,” Energy Convers. Manag., vol. 151, pp. 73–85, Nov. 2017. DOI: 10.1016/j.enconman.2017.08.082.
  • N. M. A. Budiyanto and R. Nawara, “The optimization of exergoenvironmental factors in the combined gas turbine cycle and carbon dioxide cascade to generate power in LNG tanker ship,” Energy Convers. Manag., vol. 205, Feb. 2020. DOI: 10.1016/j.enconman.2020.112468.
  • O. P. Sharma, S. C. Kaushik, and K. Manjunath, “Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery,” Therm. Sci. Eng. Prog., vol. 3, pp. 62–74, Sep. 2017. DOI: 10.1016/j.tsep.2017.06.004.
  • Y. M. Kim, J. L. Sohn, and E. S. Yoon, “Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine,” Energy, vol. 118, pp. 893–905, Jan. 2017. DOI: 10.1016/j.energy.2016.10.106.
  • K. Manjunath, O. P. Sharma, S. K. Tyagi, and S. C. Kaushik, “Thermodynamic analysis of a supercritical/transcritical CO2 based waste heat recovery cycle for shipboard power and cooling applications,” Energy Convers. Manag., vol. 155, pp. 262–275, Jan. 2018. DOI: 10.1016/j.enconman.2017.10.097.
  • S. Y. Hou et al., “Optimization of a combined cooling, heating and power system using CO2 as main working fluid driven by gas turbine waste heat,” Energy Convers. Manag., vol. 178, pp. 235–249, Dec. 2018. DOI: 10.1016/j.enconman.2018.09.072.
  • S. Y. Hou et al., “Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle,” Energy Convers. Manag., vol. 172, pp. 457–471, Sep. 2018. DOI: 10.1016/j.enconman.2018.07.042.
  • R. Chacartegui, D. Sánchez, J. Muñoz, and T. Sánchez, “Alternative ORC bottoming cycles for combined cycle power plants,” Appl. Energy, vol. 86, no. 10, pp. 2162–2170, Oct. 2009. DOI: 10.1016/j.apenergy.2009.02.016.
  • J. J. Sienicki, A. Moisseytsev, R. L. Fuller, S. A. Wright, and P. S. Pickard, “Scale dependencies of supercritical carbon dioxide Brayton cycle technologies and the optimal size for a next-step supercritical CO2 cycle demonstration,” presented at the SCO2 Power Cycle Symposium, Boulder, Colorado, May 24–25, 2011.
  • H. Chen and N. C. Baines, “The aerodynamic loading of radial and mixed-flow turbines,” Int. J. Mech. Sci., vol. 36, no. 1, pp. 63–79, Jan. 1994. DOI: 10.1016/0020-7403(94)90007-8.
  • J. J. Dyreby, “Modeling the supercritical carbon dioxide Brayton cycle with recompression,” Ph.D. dissertation, Mechanical Engineering, Madison, USA: The University of Wisconsin-Madison, 2014.
  • S. A. Wright, R. F. Radel, M. E. Vernon, G. E. Rochau, and P. S. Pickard, “Operation and analysis of a supercritical CO2 Brayton cycle,” Sandia National Laboratory, USA, Rep. SAND2010-0171, 2010.
  • J. E. Hesselgreaves, Compact Heat Exchangers: Selection, Design and Operation. UK: Elsevier, University of Oxford, 2001.
  • V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, no. 2, pp. 359–368, 1976.
  • V. Gnielinski, “Heat transfer coefficients for turbulent flow in concentric annular ducts,” Heat Transf. Eng., vol. 30, no. 6, pp. 431–436, 2009. DOI: 10.1080/01457630802528661.
  • V. Gnielinski, “On heat transfer in tubes,” Int. J. Heat Mass Transf., vol. 63, pp. 134–140, Apr. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.