290
Views
3
CrossRef citations to date
0
Altmetric
Articles

Leidenfrost Phenomenon and Rewetting of Hot Vertical Tubes by Bottom Flooding Using Nanofluids

, &

References

  • S. Nukiyama, “The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure,” J. Japanese Soc. Mech. Eng., vol. 37, no. 206, pp. 367–374, 1934. DOI: 10.1016/0017-9310(66)90138-4.
  • J. G. Leidenfrost, “On the fixation of water in diverse fire,” Int. J. Heat Mass Transf., vol. 9, no. 11, pp. 1153–1166, 1966. DOI: 10.1016/0017-9310. (66)90111-6. DOI: 10.1016/0017-9310(66)90111-6.
  • N. Nagai and S. Nishio, “Leidenfrost temperature on an extremely smooth surface,” Exp. Therm. Fluid Sci., vol. 12, no. 3, pp. 373–379, 1996. DOI: 10.1016/0894-1777(95)00129-8.
  • Y. M. Qiao and S. Chandra, “Experiments on adding a surfactant to water drops boiling on a hot surface,” Proc. R. Soc. Lond. A, vol. 453, no. 1959, pp. 673–689, 1997. DOI: 10.1098/rspa.1997.0038.
  • A.-L. Biance, C. Clanet, and D. Quéré, “Leidenfrost drops,” Phys. Fluids, vol. 15, no. 6, pp. 1632–1637, 2003. DOI: 10.1063/1.1572161.
  • A. K. Mozumder, M. R. Ullah, A. Hossain, and M. A. Islam, “Sessile drop evaporation and Leidenfrost phenomenon,” Am. J. Appl. Sci., vol. 7, no. 6, pp. 846–851, 2010, DOI: 10.3844/ajassp.2010.846.851.
  • D. E. E. Strier, A. A. A. Duarte, H. Ferrari, and G. B. B. Mindlin, “Nitrogen stars: morphogenesis of a liquid drop,” Phys. A, vol. 283, no. 1–2, pp. 261–266, 2000. DOI: 10.1016/S0378-4371(00)00164-3.
  • A. Snezhko, E. B. Jacob, and I. S. Aranson, “Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets,” New J. Phys., vol. 10, no. 4, pp. 043034, 2008. DOI: 10.1088/1367-2630/10/4/043034.
  • K. Adachi and R. Takaki, “Vibration of a flattened drop. I. Observation,” J. Phys. Soc. Jpn., vol. 53, no. 12, pp. 4184–4191, 1984. DOI: 10.1143/JPSJ.53.4184.
  • N. Tokugawa and R. Takaki, “Mechanism of self-induced vibration of a liquid drop based on the surface tension fluctuation,” J. Phys. Soc. Jpn., vol. 63, no. 5, pp. 1758–1768, 1994. DOI: 10.1143/JPSJ.63.1758.
  • J. E. Bergen, B. C. Basso, and J. B. Bostwick, “Leidenfrost drop dynamics: exciting dormant modes,” Phys. Rev. Fluids, vol. 4, no. 8, pp. 1–14, 2019. DOI: 10.1103/PhysRevFluids.4.083603.
  • X. Ma and J. C. Burton, “Self-organized oscillations of Leidenfrost drops,” J. Fluid Mech., vol. 846, pp. 263–291, Apr. 2018. DOI: 10.1017/jfm.2018.294.
  • D. Quéré, “Leidenfrost dynamics,” Annu. Rev. Fluid Mech., vol. 45, no. 1, pp. 197–215, 2013. DOI: 10.1146/annurev-fluid-011212-140709.
  • J. M. Ramilison and J. H. Lienhard, “Transition boiling heat transfer and the film transition regime,” J. Heat Transf., vol. 109, no. 3, pp. 746–752, 1987. DOI: 10.1115/1.3248153.
  • K. N. Rainey and S. M. You, “Pool boiling heat transfer from plain and micro porous, square pin finned surfaces in saturated FC-72,” J. Heat Transf., vol. 122, no. 3, pp. 509–516, 2000. DOI: 10.1115/1.1288708.
  • S. S. Dua and C. L. Tien, “An experimental investigation of falling-film rewetting,” Int. J. Heat Mass Transf., vol. 21, no. 7, pp. 955–965, 1978. DOI: 10.1016/0017-9310(78)90187-4.
  • S. T. Wang and R. A. Seban, “Heat transfer during the quench process that occurs in the reflood of a single vertical tube,” Int. J. Heat Mass Transf., vol. 31, no. 6, pp. 1189–1198, 1988. DOI: 10.1016/0017-9310(88)90062-2.
  • M. Inoue and H. Tanaka, “Study on surface rewet caused by uniform collapse of flow film boiling,” Int. J. Heat Mass Transf., vol. 34, pp. 1139–1147, 1991. DOI: 10.1016/0017-9310(91)90023-8.
  • S. M. Kwark, R. Kumar, G. Moreno, J. Yoo, and S. M. You, “Pool boiling characteristics of low concentration nanofluids,” Int. J. Heat Mass Transf., vol. 53, no. 5–6, pp. 972–981, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.11.018.
  • G. Paul, J. Philip, B. Raj, P. K. P. K. Das, and I. Manna, “Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process,” Int. J. Heat Mass Transf., vol. 54, no. 15–16, pp. 3783–3788, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.044.
  • G. Paul, S. Sarkar, T. Pal, P. K. K. Das, and I. Manna, “Concentration and size dependence of nano-silver dispersed water based nanofluids,” J Colloid Interface Sci., vol. 371, no. 1, pp. 20–27, 2012. DOI: 10.1016/j.jcis.2011.11.057.
  • M. Chopkar, P. K. Das, and I. Manna, “Synthesis and characterization of nanofluid for advanced heat transfer applications,” Scr. Mater., vol. 55, no. 6, pp. 549–552, 2006. DOI: 10.1016/j.scriptamat.2006.05.030.
  • M. Chopkar, S. Kumar, D. R. Bhandari, P. K. Das, and I. Manna, “Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid,” Mater. Sci. Eng. B, vol. 139, no. 2–3, pp. 141–148, 2007. DOI: 10.1016/j.mseb.2007.01.048.
  • H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, and L. Wen Hu, “On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles,” Int. J. Multiph. Flow, vol. 35, no. 5, pp. 3783–3788, 2009, DOI: 10.1016/j.ijmultiphaseflow.2009.02.004.
  • K. Babu and T. S. Prasanna Kumar, “Estimation and analysis of surface heat flux during quenching in CNT nanofluids,” J. Heat Transf., vol. 133, no. 7, pp. 71501, 2011. DOI: 10.1115/1.4003572.
  • F. R. Dareh, M. Haghshenasfard, M. Nasr Esfahany, and H. R. Salimi Jazi, “An experimental investigation of pool boiling characteristics of alumina-water nanofluid over micro-/nanostructured surfaces,” Heat Transf. Eng., vol. 40, no. 20, pp. 1–18, 2019. DOI: 10.1080/01457632.2018.1496980.
  • I. Sarkar, S. Chakraborty, A. Roshan, D. K. Behera, S. K. Pal, and S. Chakraborty, “Application of TiO2 nanofluid-based coolant for jet impingement quenching of a hot steel plate,” Exp. Heat Transf., vol. 32, no. 4, pp. 322–336, 2019. DOI: 10.1080/08916152.2018.1517835.
  • K. M. Kim, S. W. Lee, and I. C. Bang, “Effects of SiC and graphene-oxide nanoparticles-coated surfaces on quenching performance,” Nucl. Tech., vol. 190, no. 3, pp. 345–358. DOI: 10.13182/nt14-82.
  • G. Duursma, K. Sefiane, and A. Kennedy, “Experimental studies of nanofluid droplets in spray cooling,” Heat Transf. Eng., vol. 30, no. 13, pp. 1108–1120, 2009. DOI: 10.1080/01457630902922467.
  • S. Mori, S. Mt Aznam, R. Yanagisawa, F. Yokomatsu, and K. Okuyama, “Measurement of a heated surface temperature using a high-speed infrared camera during critical heat flux enhancement by a honeycomb porous plate in a saturated pool boiling of a nanofluid,” Heat Transf. Eng., vol. 41, pp. 15–16, 2020. DOI: 10.1080/01457632.2019.1628487.
  • O. C. Iloeje, D. N. Plummer, W. M. Rohsenow, and P. Griffith, “An investigation of the collapse and surface rewet in film boiling in forced vertical flow,” J. Heat Transf., vol. 97, no. 2, pp. 166–172, 1975. DOI: 10.1115/1.3450336.
  • M. Mitsutsuka and K. Fukuda, “The transition boling and characteristic temperature in cooling curve during water quenching of heated metal,” ISIJ Int., vol. 16, no. 1, pp. 46–50, 1976. DOI: 10.2355/isijinternational1966.16.46.
  • V. K. Dhir, R. B. Duffey, and I. Catton, “Quenching studies on a zircaloy rod bundle,” J. Heat Transf., vol. 103, no. 2, pp. 293–299, 1981. DOI: 10.1115/1.3244456.
  • O. C. Iloeje, D. N. Plummer, W. M. Rohsenow, and P. Griffith, “Effect of mass flux, flow quality, thermal and surface properties of materials on rewet of dispersed flow film boiling,” J. Heat Transf., vol. 104, no. 2, pp. 304–308, 1982. DOI: 10.1115/1.3245088.
  • T. Ueda, S. Tsunenari, and M. Koyanagi, “An investigation of critical heat flux and surface rewet in flow boiling systems,” Int. J. Heat Mass Transf., vol. 26, no. 8, pp. 1189–1198, 1983. DOI: 10.1016/S0017-9310(83)80173-2.
  • Y. Lee and W.-Q. Shen, “Effect of coolant vapor quality on rewetting phenomena,” Int. J. Heat Mass Transf., vol. 28, no. 1, pp. 139–146, 1985. DOI: 10.1016/0017-9310(85)90015-8.
  • Y. Barnea, E. Elias, and I. Shai, “Flow and heat transfer regimes during quenching of hot surfaces,” Int. J. Heat Mass Transf., vol. 37, no. 10, pp. 1441–1453, 1994. DOI: 10.1016/0017-9310(94)90146-5.
  • A. K. Saxena, V. Venkat Raj, and V. Govardhana Rao, “Experimental studies on rewetting of hot vertical annular channel,” Nucl. Eng. Des., vol. 208, no. 3, pp. 283–303, 2001. DOI: 10.1016/S0029-5493(01)00356-9.
  • G. P. Celata, M. Cumo, M. Gervasi, and G. Zummo, “Quenching experiments inside 6.0 mm tube at reduced gravity,” Int. J. Heat Mass Transf., vol. 52, no. 11–12, pp. 2807–2814, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.08.043.
  • G. P. Celata, M. Cumo, F. D’Annibale, L. Saraceno, and G. Zummo, “Rewetting velocity in quenching at reduced gravity,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1567–1575, 2010. DOI: 10.1016/j.ijthermalsci.2010.04.012.
  • S. W. Lee, S. Y. Chun, C. H. Song, and I. C. Bang, “Effect of nanofluids on reflood heat transfer in a long vertical tube,” Int. J. Heat Mass Transf., vol. 55, no. 17–18, pp. 4766–4771, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.041.
  • S. W. Lee, S. M. Kim, S. D. Park, and I. C. Bang, “Study on the cooling performance of sea salt solution during reflood heat transfer in a long vertical tube,” Int. J. Heat Mass Transf., vol. 60, no. 1, pp. 105–113, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.046.
  • G. Paul, P. K. Das, and I. Manna, “Rewetting of vertical pipes by bottom flooding using nanofluid as a coolant,” J. Heat Transf., vol. 137, no. 12, pp. 121009, 2015. DOI: 10.1115/1.4030925.
  • G. Paul, P. K. Das, and I. Manna, “Assessment of the process of boiling heat transfer during rewetting of a vertical tube bottom flooded by alumina nanofluid,” Int. J. Heat Mass Transf., vol. 94, pp. 390–402, Mar. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.013.
  • A. K. Sharma, M. Modak, and S. K. Sahu, “Experimental investigation of rewetting during quenching of hot surface by round jet impingement using Al2O3-water nanofluids,” presented at the Proc. 2016 24th Int. Conf. Nucl. Eng., Charlotte, North Carolina, 1–7.
  • N. Tsapis et al., “Onset of buckling in drying droplets of colloidal suspensions,Phys. Rev. Lett., vol. 94, no. 1, pp. 018302, 2005. DOI: 10.1103/PhysRevLett.94.018302.
  • S. Basu, A. Saha, and R. Kumar, “Criteria for thermally induced atomization and catastrophic breakup of acoustically levitated droplet,” Int. J. Heat Mass Transf., vol. 59, no. 1, pp. 316–327, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.040.
  • A. Saha, S. Basu, and R. Kumar, “Effects of acoustic-streaming-induced flow in evaporating nanofluid droplets,” J. Fluid Mech., vol. 692, pp. 207–219, Feb. 2012. DOI: 10.1017/jfm.2011.505.
  • S. Basu, E. Tijerino, and R. Kumar, “Insight into morphology changes of nanoparticle laden droplets in acoustic field,” Appl. Phys. Lett., vol. 102, no. 14, pp. 141602, 2013. DOI: 10.1063/1.4801502.
  • E. Tijerino, S. Basu, and R. Kumar, “Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes,” J. Appl. Phys., vol. 113, no. 3, pp. 034307, 2013. DOI: 10.1063/1.4775791.
  • G. Paul, P. K. Das, and I. Manna, “Droplet oscillation and pattern formation during Leidenfrost phenomenon,” Exp. Therm. Fluid Sci., vol. 60, pp. 346–353, Jan. 2015. DOI: 10.1016/j.expthermflusci.2014.05.011.
  • J. P. Holman. Experimental Methods for Engineers, 8th ed. New York, NY, USA: The McGraw-Hill Companies, 2012.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • N. J. Holter and W. R. Glasscock, “Vibrations of evaporating liquid drops,” J. Acoust. Soc. Am., vol. 24, no. 6, pp. 682–686, 1952. DOI: 10.1121/1.1906956.
  • W. J. Chen, Y. Lee, and D. C. Groeneveld, “Measurement of boiling curves during rewetting of a hot circular duct,” Int. J. Heat Mass Transf., vol. 22, no. 6, pp. 973–976, 1979. DOI: 10.1016/0017-9310(79)90039-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.