385
Views
5
CrossRef citations to date
0
Altmetric
Articles

Conjugate Heat Transfer Predictions on Combined Impingement and Film Cooling of a Blade Leading Edge Model

, , , &

References

  • M. V. Jensen and J. H. Walther, “Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference,” Heat Transf. Eng., vol. 34, no. 10, pp. 801–809, 2013. DOI: 10.1080/01457632.2012.746153.
  • K. Chen, P. X. Jiang, J. N. Chen, and R. N. Xu, “Numerical investigation of jet impingement cooling of a flat plate with carbon dioxide at supercritical pressures,” Heat Transf. Eng., vol. 39, no. 2, pp. 85–97, 2018. DOI: 10.1080/01457632.2017.1288042.
  • B. R. Hollworth and L. Dagan, “Arrays of impingement jets with spent fluid removal through vent holes on the target surface, part I: average heat transfer,” J. Eng. Gas Turbines Power, vol. 102, no. 4, pp. 994–999, 1980. DOI: 10.1115/1.3230372.
  • S. V. Ekkad, Y. Huang, and J. C. Han, “Impingement heat transfer on a target plate with film holes,” J. Thermophys. Heat Transfer, vol. 13, no. 4, pp. 522–528, 1999. DOI: 10.2514/2.6471.
  • D. E. Metzger and R. S. Bunker, “Local heat transfer in internally cooled turbine airfoil leading edge regions: Part II—impingement cooling with film coolant extraction,” J. Turbomach., vol. 112, no. 3, pp. 459–466, 1990. DOI: 10.1115/1.2927681.
  • M. E. Taslim, Y. Pan, and S. D. Spring, “An experimental study of impingement on roughened airfoil leading-edge walls with film holes,” J. Turbomach., vol. 123, no. 4, pp. 766–773, 2001. DOI: 10.1115/1.1401035.
  • M. E. Taslim, Y. Pan, and K. Bakhtari, “Experimental racetrack shaped jet impingement on roughened leading edge wall with film holes,” presented at the Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, The Netherlands, GT2002-30477, Jun. 3–6, 2002, pp. 897–906. DOI: 10.1115/GT2002-30477.
  • M. E. Taslim and A. Khanicheh, “Experimental and numerical study of impingement on an airfoil leading edge with and without showerhead and gill film holes,” J. Turbomach., vol. 128, no. 2, pp. 310–320, 2006. DOI: 10.1115/1.2137742.
  • B. D. Mouzon, E. J. Terrel, J. E. Albert, and D. G. Bogard, “Net heat flux reduction and overall effectiveness for a turbine blade leading edge,” presented at the Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air, Reno, NV, USA, GT2005-69002, Jun. 6–9, 2005, pp. 825–832. DOI: 10.1115/GT2005-69002.
  • L. D. Dobrowolski, D. G. Bogard, J. Piggush, and A. Kohli, “Numerical simulation of a simulated film cooled turbine blade leading edge including conjugate heat transfer effects,” presented at the ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, USA, IMECE2009-11670, Nov. 13–19, 2009, pp. 2145–2156. DOI: 10.1115/IMECE2009-11670.
  • S. Ravelli, L. Dobrowolski, and D. G. Bogard, “Evaluating the effects of internal impingement cooling on a film cooled turbine blade leading edge,” presented at the Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK, GT2010-23002, Jun. 14–18, 2010, pp. 1655–1665. DOI: 10.1115/GT2010-23002.
  • J. Maikell, D. B. Bogard, J. Piggush, and A. Kohli, “Experimental simulation of a film cooled turbine blade leading edge including thermal barrier coating effects,” J. Turbomach., vol. 133, no. 1, pp. 011014, 2011. DOI: 10.1115/1.4000537.
  • S. Mathew, S. Ravelli, and D. G. Bogard, “Evaluation of CFD predictions using thermal field measurements on a simulated film cooled turbine blade leading edge,” J. Turbomach., vol. 135, no. 1, pp. 011021, 2013. DOI: 10.1115/1.4006397.
  • T. E. Dyson, D. G. Bogard, J. D. Piggush, and A. Kohli, “Overall effectiveness for a film cooled turbine blade leading edge with varying hole pitch,” J. Turbomach., vol. 135, no. 3, pp. 31011, 2013. DOI: 10.1115/1.4006872.
  • T. E. Dyson, D. G. Bogard, and S. D. Bradshaw, “Evaluation of CFD simulations of film cooling performance on a turbine vane including conjugate heat transfer effects,” Int. J. Heat Fluid Flow, vol. 50, pp. 279–286, Dec. 2014. DOI: 10.1016/j.ijheatfluidflow.2014.08.010.
  • M. L. Nathan, T. E. Dyson, D. G. Bogard, and S. D. Bradshaw, “Adiabatic and overall effectiveness for the showerhead film cooling of a turbine vane,” J. Turbomach., vol. 136, no. 5, pp. 031005, 2014. DOI: 10.1115/1.4024680.
  • W. R. Stewart and D. G. Bogard, “Experimental thermal field measurements of film cooling above the suction surface of a turbine vane,” J. Eng. Gas Turbines Power, vol. 137, no. 10, pp. 102604, 2015. DOI: 10.1115/1.4030263.
  • K. Chavez, T. N. Slavens, and D. G. Bogard, “Effects of internal and film cooling on the overall effectiveness of a fully cooled turbine airfoil with shaped holes,” presented at the Proceedings of ASME Turbo Expo 2016: Power for Land, Sea, and Air, Seoul, South Korea, GT2016-57992, Jun. 13–17, 2016. DOI: 10.1115/GT2016-57992.
  • J. Wang, K. Tian, H. Zhu, M. Zeng, and B. Sundén, “Numerical investigation of particle deposition in film-cooled blade leading edge,” Num. Heat Transf. A Appl., vol. 77, no. 6, pp. 579–598, 2020. DOI: 10.1080/10407782.2020.1713692.
  • S. J. Li, S. F. Yang, and J. C. Han, “Effect of coolant density on leading edge showerhead film cooling using the pressure sensitive paint measurement technique,” J. Turbomach., vol. 136, no. 5, 051011, 2014. DOI: 10.1115/1.4025225.
  • S. B. Islami, S. P. A. Tabrizi, B. A. Jubran, and E. Esmaeilzadeh, “Influence of trenched shaped holes on turbine blade leading edge film cooling,” Heat Transf. Eng., vol. 31, no. 10, pp. 889–906, 2010. DOI: 10.1080/01457630903550317.
  • W. D. York and J. H. Leylek, “Leading-edge film-cooling physics—Part III: diffused hole effectiveness,” J. Turbomach., vol. 125, no. 2, pp. 252–259, 2003. DOI: 10.1115/1.1559899.
  • G. G. Barigozzi and S. S. Ravelli, “Combined experimental and numerical study of showerhead film cooling in a linear nozzle vane cascade,” presented at the Proceedings of ASME Turbo Expo 2015: Power for Land, Sea, and Air, Montreal, QC, Canada, GT2015-42397, Jun. 15–19, 2015, DOI: 10.1115/GT2015-42397.
  • Z. Liu, L. Ye, C. Y. Wang, and Z. P. Feng, “Numerical simulation on impingement and film composite cooling of blade leading edge model for gas turbine,” Appl. Therm. Eng., vol. 73, no. 2, pp. 1432–1443, 2014. DOI: 10.1016/j.applthermaleng.2014.05.060.
  • Z. Liu, L. Ye, and Z. P. Feng, “Numerical study of impingement and film composite cooling on blade leading edge,” presented at the Proceedings of ASME Turbo Expo 2014: Power for Land, Sea, and Air, Dusseldorf, Germany, GT2014-26643, Jun. 16–20, 2014. DOI: 10.1115/GT2014-26643.
  • L. P. Timoko, “Energy efficient engine high pressure turbine component test performance report,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, USA, Tech. Rep. NASA-CR-168289, 1984.
  • X. Yang et al., “Experimental and numerical investigations of overall cooling effectiveness on a vane endwall with jet impingement and film cooling,” Appl. Therm. Eng., vol. 148, pp. 1148–1163, Feb. 2019. DOI: 10.1016/j.applthermaleng.2018.11.116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.