221
Views
4
CrossRef citations to date
0
Altmetric
Articles

Structure Effect on Heating Performance of Microwave Inductive Waste Lubricating Oil Pyrolysis

, , , , &

References

  • I. S. Anufriev, S. V. Alekseenko, E. P. Kopyev, and O. V. Sharypov, “Combustion of substandard liquid hydrocarbons in atmosphere burners with steam gasification,” J. Eng. Thermophys., vol. 28, no. 3, pp. 324–331, Jul. 2019. DOI: 10.1134/S1810232819030032.
  • L-Y Hou, N. Dong, and D-p Sun, “Heat transfer and thermal cracking behavior of hydrocarbon fuel,” Fuel, vol. 103, pp. 1132–1137, Jan. 2013. DOI: 10.1016/j.fuel.2012.09.021.
  • H. Li et al., “Fundamentals and applications of microwave heating to chemicals separation processes,” Renew. Sust. Energy Rev., vol. 114, Oct. 2019. DOI: 10.1016/j.rser.2019.109316.
  • H. Manisha, P. D. P. Swetha, Y.-B. Shim, and K. S. Prasad, “Microwave assisted synthesis of hybrid Cu2O microcubes for photocatalysis and electrocatalysis,” Mater. Today, vol. 5, no. 8, pp. 16390–16393, May 2018. DOI: 10.1016/j.matpr.2018.05.135.
  • S. Mishra et al., “Rapid microwave-hydrothermal synthesis of CeO2 nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light,” Optik, vol. 169, pp. 125–136, May 2018. DOI: 10.1016/j.ijleo.2018.05.045.
  • M. Yasunari, I. Tomohiro, Y. Tsuyoshi, S. Yoshinari, and S. Hironao, “Continuous-flow Suzuki-Miyaura and Mizoroki-Heck reactions under microwave heating conditions,” Chem. Rec. (New York, N.Y.), vol. 19, no. 1, pp. 3–14, Jan. 2019. DOI: 10.1002/tcr.201800063.
  • C. Chaiyos, T. Weerinradah, G. Kate, and R. Apinpus, “Microwave synthesis of ZnO nanoparticles using longan seeds biowaste and their efficiencies in photocatalytic decolorization of organic dyes,” Environ. Sci. Pollu. Res., vol. 26, no. 17, pp. 17548–17554, June 2019. DOI: 10.1007/s11356-019-05099-w.
  • L. Quiles-Carrillo, C. Mellinas, M. C. Garrigos, R. Balart, and S. Torres-Giner, “Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods,” Food Anal. Methods, vol. 12, no. 11, pp. 2480–2490, Nov. 2019. DOI: 10.1007/s12161-019-01596-3.
  • S. Suna, “Effects of hot air, microwave and vacuum drying on drying characteristics and in vitro bioaccessibility of medlar fruit leather (pestil),” Food Sci. Biotechnol., vol. 28, no. 5, pp. 1465–1474, Oct. 2019. DOI: 10.1007/s10068-019-00588-7.
  • X. Gao, D. Shu, X. Li, and H. Li, “Improved film evaporator for mechanistic understanding of microwave-induced separation process,” Front. Chem. Sci. Eng., vol. 13, no. 4, pp. 759–771, Dec. 2019. DOI: 10.1007/s11705-019-1816-1.
  • Y. Wang, S. Guo, Z. Gu and A. Zhang, “Comparison study on microwave irradiation-activated persulfate and hydrogen peroxide systems in the treatment of dinitrodiazophenol industrial wastewater,” Chemosphere, vol. 242, pp. 125139, Mar. 2020. DOI: 10.1016/j.chemosphere.2019.125139.
  • F. Franco et al., “Microwave assisted acid treatment of kerolitic clays from the Neogene Madrid Basic (Spain) and its use in CO2 capture processes,” Micropor. Mesopor. Mater., vol. 292, Jan. 2020. DOI: 10.1016/j.micromeso.2019.109749.
  • Y. Tan et al., “Application of microwave heating for methane dry reforming catalyzed by activated carbon,” Chem. Eng. Process., vol. 145, Nov. 2019. DOI: 10.1016/j.cep.2019.107662.
  • J. Dehghannya, S. Kadkhodaei, M. K. Heshmati, and B. Ghanbarzadeh, “Ultrasound-assisted intensification of a hybrid intermittent microwave – Hot air drying process of potato: Quality aspects and energy consumption,” Ultrasonics, vol. 96, pp. 104–122, Jul. 2019. DOI: 10.1016/j.ultras.2019.02.005.
  • I. İlter et al., “Microwave and hot air drying of garlic puree: Drying kinetics and quality characteristics,” Heat Mass Transf., vol. 54, no. 7, pp. 2101–2112, Jul. 2018. DOI: 10.1007/s00231-018-2294-6.
  • E. M. Villota et al., “Optimizing microwave-assisted pyrolysis of phosphoric acid-activated biomass: Impact of concentration on heating rate and carbonization time,” ACS Sustain. Chem. Eng., vol. 6, no. 1, pp. 1318–1326, Jan. 2018. DOI: 10.1021/acssuschemeng.7b03669.
  • X. Li, J. Zhai, H. Li, and X. Gao, “An integration recycling process for cascade utilization of waste engine oil by distillation and microwave-assisted pyrolysis,” Fuel Process. Technol., vol. 199, Mar. 2020. DOI: 10.1016/j.fuproc.2019.106245.
  • P. Jiang, J. Yan, S. Yan, Z. Lu, and Y. Zhu, “Thermal cracking and heat transfer of hydrocarbon fuels at supercritical pressures in vertical tubes,” Heat Transf. Eng., vol. 40, no. 5–6, pp. 437–449, Apr. 2019. DOI: 10.1080/01457632.2018.1432026.
  • C. Liu and D. Sheen, “Analysis and control of the thermal runaway of ceramic slab under microwave heating,” Sci. China. Series B, vol. 51, pp. 2223–2231, Dec. 2008. DOI: 10.1007/s11431-008-0221-7.
  • M. R. Hossan, D. Byun, and P. Dutta, “Analysis of microwave heating for cylindrical shaped objects,” Int. J. Heat Mass Transf., vol. 53, no. 23–24, pp. 5129–5138, Nov. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.07.051.
  • H. Li, J. Li, X. Fan, X. Li, and X. Gao, “Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation,” Fuel, vol. 239, no. 1, pp. 219–229, Mar. 2019. DOI: 10.1016/j.fuel.2018.10.139.
  • H. Li, P. Shi, X. Fan, and X. Gao, “Understanding the influence of microwave on the relative volatility used in the pyrolysis of Indonesia oil sands,” Chin. J. Chem. Eng., vol. 26, no. 7, pp. 1485–1492, Jul. 2018. DOI: 10.1016/j.cjche.2018.02.035.
  • V. I. Anfinogentov, T. K. Garayev, and G. A. Morozov, “Optimization of dielectric microwave heating by moving radiator,” presented at the 12th International Crimean Conference on Microwave and Telecommunication Technology, Sevastopol, Ukraine, Sep. 09, 2002. DOI: 10.1109/CRMICO.2002.1137374.
  • V. Sebera, A. Nasswettrová and K. Nikl, “Finite element analysis of mode stirrer impact on electric field uniformity in a microwave applicator,” Dry. Technol., vol. 30, no. 13, pp. 1388–1396, Sep. 2012. DOI: 10.1080/07373937.2012.664800.
  • H. Goyal, A. Mehdad, R. F. Lobo, G. D. Stefanidis, and D. G. Vlachos, “Scaleup of a single-mode microwave reactor,” Ind. Eng. Chem. Res., vol. 59, no. 6, pp. 2516–2523, Feb. 2020. DOI: 10.1021/acs.iecr.9b04491.
  • A. J. Buttress et al., “Towards large scale microwave treatment of ores: Part 1 – Basis of design, construction and commissioning,” Miner. Eng., vol. 109, pp. 169–183, Aug. 2017. DOI: 10.1016/j.mineng.2017.03.006.
  • N. M. Nicholas, S. M. Lewis, and K. A. van Bibber, “Characterization of the HAYSTAC axion dark matter search cavity using microwave measurement and simulation techniques,” Rev. Sci. Instrum., vol. 90, no. 2, pp. 024706, Feb. 2019. DOI: 10.1063/1.5055246.
  • Y. Hong et al., “Three-dimensional simulation of microwave heating coal sample with varying parameters,” Appl. Therm. Eng., vol. 93, pp. 1145–1154, Jan. 2016. DOI: 10.1016/j.applthermaleng.2015.10.041.
  • D. Salvi, D. Boldor, G. M. Aita, and C. M. Sabliov, “COMSOL multiphysics model for continuous flow microwave heating of liquids,” J. Food Eng., vol. 104, no. 3, pp. 422–429, Jun. 2011. DOI: 10.1016/j.jfoodeng.2011.01.005.
  • S. Thota, G. C. Srikantaiah, B. S. Akkimaradi, A. Ambirajan, and N. Gsvl, “Numerical and experimental studies of parasitic heat losses in coldfinger of a pulse tube cryocooler in off-state condition,” Heat Transf. Eng., vol. 40, no. 11, pp. 959–970, Jul. 2019. DOI: 10.1080/01457632.2018.1446892.
  • S. Damilos, A. N. P. Radhakrishnan, G. Dimitrakis, J. Tang, and A. Gavriilidis, “Experimental and computational investigation of heat transfer in a microwave-assisted flow system,” Chem. Eng. Process., vol. 142, Aug. 2019. Doi.org/10.1016/j.cep.2019.107537.
  • C. Ellison, M. S. McKeown, S. Trabelsi, and D. Boldor, “Dielectric properties of biomass/biochar mixtures at microwave frequencies,” Energies, vol. 10, no. 4, pp. 502, Apr. 2017. DOI: 10.3390/en10040502.
  • R. Kumar and S. P. Mahulikar, “Variable fluid property effect on heat transfer and frictional flow characteristics of water flowing through microchannel,” J. Eng. Thermophys., vol. 27, no. 4, pp. 456–473, Oct. 2018. DOI: 10.1134/S1810232818040082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.