457
Views
11
CrossRef citations to date
0
Altmetric
Articles

Analysis of Fluid Flow and Heat Transfer in Corrugated Porous Fin Heat Sinks

, &

References

  • D.-R. Chen, D. Y. H. Pui and B. Y. H. Liu, “Optimization of pleated filter designs using a finite-element numerical model,” Aerosol Sci. Technol., vol. 23, no. 4, pp. 579–590, 1995. DOI: 10.1080/02786829508965339.
  • Y. Özkan and H. Erol, “On the pressure drop of wall-flow diesel particulate filters,” Presented at the 45th Intl. Cong. Expo. Noise Control Engineering, Hamburg, Germany, Aug. 21–24 2016.
  • J. Wang, “Pressure drop and flow distribution in parallel-channel configurations of fuel cells: Z-type arrangement,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5498–5509, Jun. 2010. DOI: 10.1016/j.ijhydene.2010.02.131.
  • J. F. Knoth, et al., “Transport and reaction in catalytic wall-flow filters,” Catal. Today, vol. 105, no. 3-4, pp. 598–604, 2005., noAug. DOI: 10.1016/j.cattod.2005.06.050.
  • W. W. Yuen, J. Tu, W.-C. Tam, and D. J. Blumenthal, “Design and testing of a graphite foam-based supercooler for high-heat-flux cooling in optoelectronic packages,” Heat Transf. Eng, vol. 35, no. 10, pp. 913–923, 2014. DOI: 10.1080/01457632.2014.859513.
  • N. C. Gallego and J. W. Klett, “Carbon foam thermal management,” Presented at the International Seminar on Advanced Applications for Carbon Materials, Jeju Island, South Korea, Sept. 12–13, 2002.
  • C. Li and R. A. Wirtz, “Development of a high performance heat sink based on screen-fin technology,” IEEE Trans. Comp. Pack. Tech, vol. 28, no. 1, pp. 80–87, Mar. 2005. DOI: 10.1109/TCAPT.2004.843171.
  • W. Aboelsoud, “Study of transport phenomena in carbon-based materials,” Ph.D. dissertation, Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, FL, 2013.
  • W. Aboelsoud, W. Wu, L. C. Chow, B. A. Saarloos, and D. P. Rini, “Analysis of thermal and hydraulic performance of V-shape corrugated carbon foam,” Int. J. Heat Mass Transfer, vol. 78, pp. 1114–1125, Nov. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.042.
  • W. Aboelsoud, W. Wu, L. C. Chow, B. A. Saarloos, and D. P. Rini, “Experimental investigation of thermal and hydraulic performance of V-shape corrugated carbon foam,” J. Heat Transfer, vol. 136, no. 2, paper 021902, pp. 1–10, Feb. 2014. DOI: 10.1115/1.4025433.
  • A. G. Straatman, N. C. Gallego, B. E. Thompson, and H. Hangan, “Thermal characterization of porous carbon foam - convection in parallel flow,” Int. J. Heat Mass Transfer, vol. 49, no. 11/12, pp. 1991–1998, Jun. 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.11.028.
  • A. G. Straatman, N. G. Gallego, Q. Yu, and B. E. Thompson, “Characterization of porous carbon foam as a material for compact recuperators,” J. Eng. Gas Turbines Power, vol. 129, no. 2, pp. 326–330, Apr. 2007. DOI: 10.1115/1.2436562.
  • K. C. Leong, L. W. Jin, H. Y. Li, and J. C. Chai, “Forced convection air cooling in porous graphite foam for thermal management application,” Presented at the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Florida, USA, 28–31 May 2008.
  • Y. R. Lin, J. H. Du, W. Wu, L. C. Chow, and W. Notardonato, “Experimental study on heat transfer and pressure drop of recuperative heat exchangers using carbon foam,” J. Heat Transfer, vol. 132, no. 10, paper 091902, pp. 1–10, Sep. 2010. DOI: 10.1115/1.4001625.
  • N. C. Gallego and J. W. Klett, “Carbon foams for thermal management,” Carbon, vol. 41, no. 7, pp. 1461–1466, 2003. DOI: 10.1016/S0008-6223(03)00091-5.
  • Z. A. Williams and J. A. Roux, “Graphite foam thermal management of a high packing density array of power amplifiers,” J. Electron. Packag, vol. 128, no. 4, pp. 456–465, Dec. 2006. DOI: 10.1115/1.2353282.
  • W. Lin and B. Sundén, “Graphite foam heat exchanger for vehicles,” Presented at the Vehicle Thermal Management Systems Conference & Exhibition, Gaydon, Warwickshire, United Kingdom, 2011. Heritage Motor Centre, 15–19 May.
  • V. Gandikota and A. S. Fleischer, “Experimental investigation of the thermal performance of graphite foam for evaporator enhancement in both boiling and an FC-72 thermosyphon,” Heat Transf. Eng., vol. 30, no. 8, pp. 643–648, 2009. DOI: 10.1080/01457630802659862.
  • M. Bulut, S. G. Kandlikar, and N. Sozbir, “A review of vapor chambers,” Heat Transf. Eng., vol. 40, no. 19, pp. 1551–1573, 2019. DOI: 10.1080/01457632.2018.1480868.
  • J. S. Coursey, J. Kim, and P. J. Boudreaux, “Performance of graphite foam evaporator for use in thermal management,” J. Electron. Packag., vol. 127, no. 2, pp. 127–134, Jun. 2005. DOI: 10.1115/1.1871193.
  • J. Klett, R. Ott, and and A. McMillan, “Heat exchangers for heavy vehicles utilizing high thermal conductivity graphite foams,” SAE Technical Paper, 2000-01-2207, Jun. 2000, United States. DOI: 10.4271/2000-01-2207.
  • K. Lafdi, O. Mesalhy and A. Elgafy, “Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications,” Carbon, vol. 46, no. 1, pp. 159–168, Jan. 2008. DOI: 10.1016/j.carbon.2007.11.003.
  • A. Andreozzi, N. Bianco, M. Iasiello, and V. Naso, “Thermo-fluid-dynamics of a ceramic foam solar receiver: A parametric analysis,” Heat Transf. Eng., vol. 41, no. 12, pp. 1085–1099, 2020. DOI: 10.1080/01457632.2019.1600876.
  • G. Koltsakis, et al., “Development of metal foam based after treatment on a diesel passenger car,” SAE Technical Paper, 2008–01-0619, Apr. 2008, United States. 10.4271/2008-01-0619.
  • A. Muley, C. Kiser, B. Sundén, and R. K. Shah, “Foam heat exchangers: A technology assessment,” Heat Transf. Eng, vol. 33, no. 1, pp. 42–51, 2012. DOI: 10.1080/01457632.2011.584817.
  • Y. Mahmoudi, K. Hooman, and K. Vafai, Convective Heat Transfer in Porous Media, Boca Raton, FL, USA: CRC Press, 2019,
  • M. Amani, M. Ameri, and A. Kasaeian, “Hydrothermal characteristics of spinel manganese ferrite nanofluid in a metal foam tube: Modeling of experimental results using artificial neural network,” Heat Transf. Eng., vol. 40, no. 8, pp. 627–639, 2019. DOI: 10.1080/01457632.2018.1436644.
  • B. Buonomo, D. Ercole, O. Manca, and S. Nardini, “Numerical analysis on a latent thermal energy storage system with phase change materials and aluminum foam,” Heat Transf. Eng., vol. 41, no. 12, pp. 1075–1084, 2020. DOI: 10.1080/01457632.2019.1600875.
  • O. Losito, “An analytical characterization of metal foams for shielding applications,” Proceedings of the Progress in Electromagnetics Research Symposium, Cambridge USA, New York, 2008. vol. 4, no. 8, pp. 805–810, DOI: 10.2529/PIERS080120190115.
  • E. D. Spoerke, et al., “A bioactive titanium foam scaffold for bone repair,” Acta Biomater, vol. 1, no. 5, pp. 523–533, Sep. 2005. DOI: 10.1016/j.actbio.2005.04.005.
  • W. Azzi, W. L. Roberts, and A. Rabiei, “A study on pressure drop and heat transfer in open cell metal foams for jet engine applications,” Mater. Des, vol. 28, no. 2, pp. 569–574, 2007. DOI: 10.1016/j.matdes.2005.08.002.
  • S. Krishnan, J. Y. Murthy, and S. V. Garimella, “A two-temperature model for solid-liquid phase change in metal foams,” J. Heat Transfer, vol. 127, no. 9, pp. 995–1004, Sep. 2005. DOI: 10.1115/1.2010494.
  • S. Krishnan, J. Y. Murthy, and S. V. Garimella, “A two-temperature model for the analysis of passive thermal control systems,” J. Heat Transfer, vol. 126, no. 4, pp. 628–637, Aug. 2004. DOI: 10.1115/1.1773194.
  • S. Krishnan, J. Y. Murthy, and S. V. Garimella, “Direct simulation of transport in open-cell metal foam,” J. Heat Transfer, vol. 128, no. 8, pp. 793–799, Aug. 2006. DOI: 10.1115/1.2227038.
  • M. F. Ashby, et al., Metal Foams: A Design Guide, Boston, USA: Butterworth-Heinemann, 2000,
  • M. K. Bassiouny and H. Martin, “Flow distribution and pressure drop in plate heat exchangers – II, Z-type arrangement,” Chem. Eng. Sci., vol. 39, no. 4, pp. 701–704, 1984. DOI: 10.1016/0009-2509(84)80177-3.
  • H. H. S. Yu and C. H. Goulding, “Optimized ultra high efficiency filters for high-efficiency industrial combustion turbines,” Presented at International Gas Turbine and Aeroengine Congress and Exposition, Cologne, Germany. Jun. 1– 4, 1992
  • R. W. Fox, A. T. McDonald and P. J. Pritchard, Introduction to Fluid Mechanics. New Jersy, USA: Wiley Publications, 2003.
  • R. J. Moffat, J. K. Eaton and A. Onstad, “A method for determining the heat transfer properties of foam-fins,” J. Heat Transfer, vol. 131, no. 1paper 011603, pp. 1–7, Jan. 2009. DOI: 10.1115/1.2977599.
  • K. C. Leong, H. Y. Li, L. W. Jin and J. C. Chai, “Numerical and experimental study of forced convection in graphite foams of different configurations,” Appl. Therm. Eng, vol. 30, no. 5, pp. 520–532, Apr. 2010. DOI: 10.1016/j.applthermaleng.2009.10.014.
  • V. V. Calmidi and R. L. Mahajan, “Forced convection in high porosity metal foams,” J. Heat Transfer, vol. 122, no. 3, pp. 557–565, Aug. 2000. DOI: 10.1115/1.1287793.
  • T. Y. Na, Computational Methods in Engineering Boundary Value Problems. New York, USA: Academic Press, 1979,
  • Airflow Measurement Systems. Design Concept. Chula Vista, USA: Airflow Measurement Systems. Available: http://www.fantester.com. Accessed: Jun. 18, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.