345
Views
4
CrossRef citations to date
0
Altmetric
Articles

Condensation Enhancement on Hydrophobic Surfaces Using Electrophoretic Method and Hybrid Paint Coating

, &

References

  • A. Leipertz and A. P. Fröba, “Improvement of condensation heat transfer by surface modifications,” Heat Transfer Eng., vol. 29, no. 4, pp. 343–356, 2008. DOI: 10.1080/01457630701821563.
  • R. Enright, N. Miljkovic, J. L. Alvarado, K. Kim and J. W. Rose, “Dropwise condensation on micro-and nanostructured surfaces,” Nanoscale Microscale Thermophys. Eng., vol. 18, no. 3, pp. 223–250, 2014. DOI: 10.1080/15567265.2013.862889.
  • D. Torresin, M. K. Tiwari, D. D. Col and D. Poulikakos, “Flow condensation on copper-based nanotextured superhydrophobic surfaces,” Langmuir, vol. 29, no. 2, pp. 840–848, 2013. DOI: 10.1021/la304389s.
  • M. Edalatpour, L. Liu, A. M. Jacobi, K. Eid and A. Sommers, “Managing water on heat transfer surfaces: a critical review of techniques to modify surface wettability for applications with condensation or evaporation,” Appl. Energy, vol. 222, pp. 967–992, Jul. 2018. DOI: 10.1016/j.apenergy.2018.03.178.
  • H. J. Cho, D. J. Preston, Y. Zhu and E. N. Wang, “Nanoengineered materials for liquid–vapour phase-change heat transfer,” Nat. Rev. Mater., vol. 2, no. 2, 2017. DOI: 10.1038/natrevmats.2016.92.
  • D. Xing, F. Wu, R. Wang, J. Zhu and X. Gao, “Microdrop-Assisted Microdomain Hydrophilicization of Superhydrophobic Surfaces for High-Efficiency Nucleation and Self-Removal of Condensate Microdrops,” ACS Appl. Mater. Interf., vol. 11, no. 7, pp. 7553–7558, 2019. DOI: 10.1021/acsami.8b19868.
  • N. Miljkovic and E. N. Wang, “Condensation heat transfer on superhydrophobic surfaces,” MRS Bull., vol. 38, no. 5, pp. 397–406, 2013. DOI: 10.1557/mrs.2013.103.
  • Z. Lan, Y. Chen, S. Hu, G. Yin and X. Ma, “Droplet regulation and dropwise condensation heat transfer enhancement on hydrophobic-superhydrophobic hybrid surfaces,” Heat Transfer Eng., vol. 39, no. 17-18, pp. 1540–1551, 2018. DOI: 10.1080/01457632.2017.1369844.
  • M. Roudgar and J. De Coninck, “Condensation heat transfer coefficient versus wettability,” Appl. Surface Sci., vol. 338, pp. 15–21, May 2015. DOI: 10.1016/j.apsusc.2015.02.087.
  • K. K. Varanasi, M. Hsu, N. Bhate, W. Yang and T. Deng, “Spatial control in the heterogeneous nucleation of water,” Appl. Phys. Lett., vol. 95, no. 9, pp. 094101, 2009. DOI: 10.1063/1.3200951.
  • M. Alwazzan, K. Egab, B. Peng, J. Khan and C. Li, “Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer,” Int. J. Heat Mass Transfer, vol. 112, pp. 991–1004, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.039.
  • L. Mishchenko, M. Khan, J. Aizenberg and B. D. Hatton, “Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches,” Adv. Funct. Mater., vol. 23, no. 36, pp. 4577–4584, 2013. DOI: 10.1002/adfm.201300418.
  • C.-H. Chen, et al., “Dropwise condensation on superhydrophobic surfaces with two-tier roughness,” Appl. Phys. Lett., vol. 90, no. 17, pp. 173108, 2007. DOI: 10.1063/1.2731434.
  • D. Orejon, et al., “Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces,” Int. J. Heat Mass Transfer, vol. 114, pp. 187–197, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.023.
  • R. Parin, et al., “Nano-structured aluminum surfaces for dropwise condensation,” Surface Coatings Technol., vol. 348, pp. 1–12, Aug. 2018. DOI: 10.1016/j.surfcoat.2018.05.018.
  • S. Lee, et al., “Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface,” Int. J. Heat Mass Transfer, vol. 65, pp. 619–626, Oct. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.016.
  • X. Chen, J. A. Weibel and S. V. Garimella, “Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation,” Adv. Mater. Interf., vol. 2, no. 3, pp. 1400480, 2015. DOI: 10.1002/admi.201400480.
  • N. Miljkovic, et al., “Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces,” Nano Lett., vol. 13, no. 1, pp. 179–187, 2013. DOI: 10.1021/nl303835d.
  • F. Chu, X. Wu, B. Zhu and X. Zhang, “Self-propelled droplet behavior during condensation on superhydrophobic surfaces,” Appl. Phys. Lett., vol. 108, no. 19, pp. 194103, 2016. DOI: 10.1063/1.4949010.
  • E. Ölçeroğlu and M. McCarthy, “Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces,” ACS Appl. Mater. Interf., vol. 8, no. 8, pp. 5729–5736, 2016. DOI: 10.1021/acsami.6b00852.
  • X. Ji, D. Zhou, C. Dai and J. Xu, “Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface,” int. j. Heat Mass Transfer, vol. 132, pp. 52–67, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.139.
  • D. Orejon, O. Shardt, P. R. Waghmare, N. S. Kumar Gunda, Y. Takata and S. K. Mitra, “Droplet migration during condensation on chemically patterned micropillars,” RSC Adv., vol. 6, no. 43, pp. 36698–36704, 2016. DOI: 10.1039/C6RA03862J.
  • M. A. Bijarchi, A. Favakeh, E. Sedighi and M. B. Shafii, “Ferrofluid droplet manipulation using an adjustable alternating magnetic field,” Sensors Actuat. A: Phys., vol. 301, pp. 111753, 2020. DOI: 10.1016/j.sna.2019.111753.
  • Y. Hou, M. Yu, X. Chen, Z. Wang and S. Yao, “Recurrent filmwise and dropwise condensation on a beetle mimetic surface,” ACS Nano., vol. 9, no. 1, pp. 71–81, 2015. DOI: 10.1021/nn505716b.
  • S. Zhang, J. Huang, Z. Chen and Y. Lai, “Bioinspired special wettability surfaces: From fundamental research to water harvesting applications,” Small, vol. 13, no. 3, pp. 1602992, 2017. DOI: 10.1002/smll.201602992.
  • F. Bai, J. Wu, G. Gong and L. Guo, “Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection,” Adv. Sci., vol. 2, no. 7, pp. 1500047, 2015. DOI: 10.1002/advs.201500047.
  • N. Miljkovic, R. Enright and E. N. Wang, “Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces,” ACS Nano., vol. 6, no. 2, pp. 1776–1785, 2012. DOI: 10.1021/nn205052a.
  • X. Ma, Z. Lan, W. Xu, C. Zhang, Z. Fang and T. Bai, “Convection condensation heat transfer of steam-air mixture with heat pipe heat exchanger,” Heat Transfer Eng., vol. 35, no. 6-8, pp. 600–609, 2014. DOI: 10.1080/01457632.2013.837649.
  • F. M. Mancio Reis, P. Lavieille and M. Miscevic, “Dropwise condensation enhancement using a wettability gradient,” Heat Transfer Eng., vol. 38, no. 3, pp. 377–385, 2017. DOI: 10.1080/01457632.2016.1189277.
  • X. Ma, J. Chen, D. Xu, J. Lin, C. Ren and Z. Long, “Influence of processing conditions of polymer film on dropwise condensation heat transfer,” Int. J. Heat Mass Transfer, vol. 45, no. 16, pp. 3405–3411, 2002. DOI: 10.1016/S0017-9310. DOI: 10.1016/S0017-9310(02)00059-5.
  • A. B. Kananeh, M. H. Rausch, A. Leipertz and A. P. Fröba, “Dropwise condensation heat transfer on plasma-ion-implanted small horizontal tube bundles,” Heat Transfer Eng., vol. 31, no. 10, pp. 821–828, 2010. DOI: 10.1080/01457630903547545.
  • X.-H. Ma, X.-D. Zhou, Z. Lan, L. Yi-Ming and Y. Zhang, “Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation,” Int. J. Heat Mass Transfer, vol. 51, no. 7-8, pp. 1728–1737, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.07.021.
  • R. Wen, X. Zhou, B. Peng, Z. Lan, R. Yang and X. Ma, “Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas,” Int. J. Heat Mass Transfer, vol. 140, pp. 173–186, Sep. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.110.
  • Y. Wang, X. Mu, S. Shen and W. Zhang, “Heat transfer characteristics of steam condensation flow in vacuum horizontal tube,” Int. J. Heat Mass Transfer, vol. 108, pp. 128–135, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.006.
  • S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi and R. Kumar, “Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review,” Progress Polymer sci., vol. 38, no. 8, pp. 1232–1261, Aug. 2013. DOI: 10.1016/j.progpolymsci.2013.02.003.
  • B. Lin, S. Cui, X. Liu, X. Shen, Y. Liu and G. Han, “Preparation and characterization of HMDS modified hydrophobic silica aerogel,” CNANO, vol. 7, no. 6, pp. 1042–1045, 2011. DOI: 10.2174/1573413711107061042.
  • H. Pakzad, M. Liravi, A. Moosavi, A. Nouri-Borujerdi and H. Najafkhani, “Fabrication of durable superhydrophobic surfaces using PDMS and beeswax for drag reduction of internal turbulent flow,” Appl. Surface Sci., vol. 513, pp. 145754, May 2020. DOI: 10.1016/j.apsusc.2020.145754.
  • H. Negishi, A. Miyamoto and A. Endo, “Preparation of thick mesoporous silica coating by electrophoretic deposition with binder addition and its water vapor adsorption–desorption properties,” Microporous Mesoporous Mater., vol. 180, pp. 250–256, Nov. 2013. DOI: 10.1016/j.micromeso.2013.06.040.
  • M. Du and Y. Zheng, “Modification of silica nanoparticles and their application in UDMA dental polymeric composites,” Polym. Compos., vol. 28, no. 2, pp. 198–207, 2007. DOI: 10.1002/pc.20377.
  • M. M. Jalili, S. Moradian, H. Dastmalchian and A. Karbasi, “Investigating the variations in properties of 2-pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nano-silica,” Progress Organic Coatings, vol. 59, no. 1, pp. 81–87, 2007. DOI: 10.1016/j.porgcoat.2007.01.018.
  • L. Feng, et al., “A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water ,Angew. Chem. Int. Ed. Engl, vol. 43, no. 15, pp. 2012–2014, 2004. DOI: 10.1002/ange.200353381. DOI: 10.1002/anie.200353381.
  • A. M. Rabea, M. Mohseni, S. Mirabedini and M. H. Tabatabaei, “Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica,” Appl. Surface Sci., vol. 258, no. 10, pp. 4391–4396, 2012. DOI: 10.1016/j.apsusc.2011.12.123.
  • P. Król and B. Król, “Surface free energy of polyurethane coatings with improved hydrophobicity,” Colloid Polym. Sci., vol. 290, no. 10, pp. 879–893, 2012. DOI: 10.1007/s00396-012-2598-x.
  • ASTM. “D3359-Standard test method for measuring adhesion by tape test,” Annual Book of ASTM Standards. West Conshohocken, PA: ASTM, 2001.
  • M. Malaki, Y. Hashemzadeh and M. Karevan, “Effect of nano-silica on the mechanical properties of acrylic polyurethane coatings,” Progress Organic Coat., vol. 101, pp. 477–485, Dec. 2016. DOI: 10.1016/j.porgcoat.2016.09.012.
  • R. Eslami, R. Bagheri, Y. Hashemzadeh and M. Salehi, “Optical and mechanical properties of transparent acrylic based polyurethane nano Silica composite coatings,” Progress Organic Coatings, vol. 77, no. 7, pp. 1184–1190, 2014. DOI: 10.1016/j.porgcoat.2014.04.007.
  • D. J. Mills, S. Jamali and K. Paprocka, “Investigation into the effect of nano-silica on the protective properties of polyurethane coatings,” Surface Coatings Technol., vol. 209, pp. 137–142, Sep. 2012. DOI: 10.1016/j.surfcoat.2012.08.056.
  • A. Tcharkhtchi, et al., “Thermal aging effect on mechanical properties of polyurethane,” Int. J. Polymer Anal. Char., vol. 19, no. 7, pp. 571–584, 2014. DOI: 10.1080/1023666X.2014.932644.
  • F. A. McClintock and S. J. Kline, “Describing uncertainties in single-sample experiments,” Mech. Eng., vol. 75, no. 1, pp. 3–8, 1953.
  • V. Dhir and J. Lienhard, “Laminar film condensation on plane and axisymmetric bodies in nonuniform gravity,” J. Heat Transfer, vol. 93, no. 1, pp. 97–100, 1971. DOI: 10.1115/1.3449773.
  • V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, no. 2, pp. 359–368, 1976. DOI: 10.1007/BF02559682.
  • B. Petukhov, “Heat transfer and friction in turbulent pipe flow with variable physical properties,” Adv. Heat Transfer, vol. 6, pp. 503–564, 1970. DOI: 10.1016/S0065-2717.
  • B. J. Zhang, C. Kuok, K. J. Kim, T. Hwang and H. Yoon, “Dropwise steam condensation on various hydrophobic surfaces: Polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), and self-assembled micro/nano silver (SAMS),” Int. J. Heat Mass Transfer, vol. 89, pp. 353–358, Oct. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.