258
Views
6
CrossRef citations to date
0
Altmetric
Articles

Convection Heat Transfer, Entropy Generation Analysis and Thermodynamic Optimization of Nanofluid Flow in Spiral Coil Tube

, &

References

  • G. Huminic and A. Huminic, “Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: A review,” Renew. Sustain. Energy Rev., vol. 58, pp. 1327–1347, May 2016. DOI: 10.1016/j.rser.2015.12.230.
  • S. A. Berger, L. Talbot, and L. S. Yao, “Flow in curved pipes,” Annu. Rev. Fluid Mech., vol. 15, no. 1, pp. 461–512, Jan. 1983. DOI: 10.1146/annurev.fl.15.010183.002333.
  • P. Naphon and S. Wongwises, “A review of flow and heat transfer characteristics in curved tubes,” Renew. Sustain. Energy Rev., vol. 10, no. 5, pp. 463–490, Oct. 2006. DOI: 10.1016/j.rser.2004.09.014.
  • S. Vashisth, A. V. Kumar, and K. D. P. Nigam, “A review on the potential applications of curved geometries in process industry,” Ind. Eng. Chem. Res., vol. 47, no. 10, pp. 3291–3337, Apr. 2008. DOI: 10.1021/ie701760h.
  • P. Naphon, S. Wiriyasart, T. Arisariyawong, and T. Nualboonrueng, “Magnetic field effect on the nanofluids convective heat transfer and pressure drop in the spirally coiled tubes,” Int. J. Heat Mass Transfer, vol. 110, pp. 739–745, Jul. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.077.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, Feb. 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • A. Kumar and S. Subudhi, “Preparation, characterisation and heat transfer analysis of nanofluids used for engine cooling,” Appl. Therm. Eng., vol. 160, pp. 114092, Sep. 2019. DOI: 10.1016/j.applthermaleng.2019.114092.
  • W. Wang, G. Duan, J. Li, W. Zhao, C. Li, and Z. Liu, “The preparation and thermal performance research of spherical Ag-H2O nanofluids & applied in heat pipe,” Appl. Therm. Eng., vol. 116, pp. 811–822, Apr. 2017. DOI: 10.1016/j.applthermaleng.2017.02.018.
  • T. P. Teng, T. C. Hsiao, and C. C. Chung, “Characteristics of carbon-based nanofluids and their application in a brazed plate heat exchanger under laminar flow,” Appl. Therm. Eng., vol. 146, pp. 160–168, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.09.125.
  • M. Khoshvaght-Aliabadi and Z. Arani-Lahtari, “Proposing new configurations for twisted square channel (TSC): Nanofluid as working fluid,” Appl. Therm. Eng., vol. 108, pp. 709–719, Sep. 2016. DOI: 10.1016/j.applthermaleng.2016.07.173.
  • M. Malekan, A. Khosravi, and S. Syri, “Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3O4 and CuO/Therminol 66 nanofluids under magnetic field,” Appl. Therm. Eng., vol. 163, pp. 114435, Dec. 2019. DOI: 10.1016/j.applthermaleng.2019.114435.
  • S. Chakraborty, I. Sarkar, A. Ashok, I. Sengupta, S. K. Pal, and S. Chakraborty, “Thermo-physical properties of Cu-Zn-Al LDH nanofluid and its application in spray cooling,” Appl. Therm. Eng., vol. 141, pp. 339–351, Aug. 2018. DOI: 10.1016/j.applthermaleng.2018.05.114.
  • Y. Hu, Y. He, H. Gao, and Z. Zhang, “Forced convective heat transfer characteristics of solar salt-based SiO2 nanofluids in solar energy applications,” Appl. Therm. Eng., vol. 155, pp. 650–659, Jun. 2019. DOI: 10.1016/j.applthermaleng.2019.04.109.
  • S. K. Hazra, S. Ghosh, and T. K. Nandi, “Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors,” Appl. Therm. Eng., vol. 163, pp. 114402, Dec. 2019. DOI: 10.1016/j.applthermaleng.2019.114402.
  • M. Ding, C. Liu, and Z. Rao, “Experimental investigation on heat transfer characteristic of TiO2-H2O nanofluid in microchannel for thermal energy storage,” Appl. Therm. Eng., vol. 160, pp. 114024, Sep. 2019. DOI: 10.1016/j.applthermaleng.2019.114024.
  • X. Zhai, C. Qi, Y. Pan, T. Luo, and L. Liang, “Effects of screw pitches and rotation angles on flow and heat transfer characteristics of nanofluids in spiral tubes,” Int. J. Heat Mass Transfer, vol. 130, pp. 989–1003, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.131.
  • S. Suresh, K. P. Venkitaraj, and P. Selvakumar, “Comparative study on thermal performance of helical screw tape inserts in laminar flow using Al2O3/water and CuO/water nanofluids,” Superlattices Microstruct., vol. 49, no. 6, pp. 608–622, Jun. 2011. DOI: 10.1016/j.spmi.2011.03.012.
  • A. Mokhtari Ardekani, V. Kalantar, and M. M. Heyhat, “Experimental study on heat transfer enhancement of nanofluid flow through helical tubes,” Adv. Powder Technol., vol. 30, no. 9, pp. 1815–1822, Sep. 2019. DOI: 10.1016/j.apt.2019.05.026.
  • F. I. Doshmanziari, M. R. Kadivar, M. Yaghoubi, D. Jalali-Vahid, and M. A. Arvinfar, “Experimental and numerical study of turbulent fluid flow and heat transfer of Al2O3/water nanofluid in a spiral-coil tube,” Heat Transfer Eng., vol. 38, no. 6, pp. 611–626, Apr. 2017. DOI: 10.1080/01457632.2016.1200380.
  • M. Karami, M. A. Akhavan-Behabadi, and M. Fakoor-Pakdaman, “Heat transfer and pressure drop characteristics of nanofluid flows inside corrugated tubes,” Heat Transfer Eng., vol. 37, no. 1, pp. 106–114, Jan. 2016. DOI: 10.1080/01457632.2015.1042347.
  • R. M. Moghari, F. Talebi, R. Rafee, and M. Shariat, “Numerical study of pressure drop and thermal characteristics of Al2O3-water nanofluid flow in horizontal annuli,” Heat Transfer Eng., vol. 36, no. 2, pp. 166–177, Jan. 2015. DOI: 10.1080/01457632.2014.909193.
  • R. Saxena, D. Gangacharyulu, and V. K. Bulasara, “Heat transfer and pressure drop characteristics of dilute alumina–water nanofluids in a pipe at different power inputs,” Heat Transfer Eng., vol. 37, no. 18, pp. 1554–1565, Dec. 2016. DOI: 10.1080/01457632.2016.1151298.
  • D. Mansoury, F. I. Doshmanziari, A. Kiani, A. J. Chamkha, and M. Sharifpur, “Heat transfer and flow characteristics of Al2O3/water nanofluid in various heat exchangers: Experiments on counter flow,” Heat Transfer Engineering, vol. 41, no. 3, pp. 220–234, 2020. DOI: 10.1080/01457632.2018.1528051.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transfer, vol. 101, no. 4, pp. 718–725, Nov. 1979. DOI: 10.1115/1.3451063.
  • A. Bejan, Entropy Generation through Heat and Fluid Flow. New York, NY, USA John Wiley & Sons, 1982.
  • A. Bejan, “Second law analysis in heat transfer,” Energy, vol. 5, no. 8–9, pp. 720–732, Aug. 1980. DOI: 10.1016/0360-5442(80)90091-2.
  • A. Bejan, “Entropy generation minimisation: The new thermodynamics of finite‐size devices and finite‐time processes,” J. Appl. Phys., vol. 79, no. 3, pp. 1191–1218, Feb. 1996. DOI: 10.1063/1.362674.
  • A. Bejan, “Fundamentals of exergy analysis, entropy generation minimisation, and the generation of flow architecture,” Int. J. Energy Res., vol. 26, no. 7, pp. 0–546, Jun. 2002. DOI: 10.1002/er.804.
  • A. Sciacovelli, V. Verda, and E. Sciubba, “Entropy generation analysis as a design tool—A review,” Renew. Sustain. Energy Rev., vol. 43, pp. 1167–1181, Mar. 2015. DOI: 10.1016/j.rser.2014.11.104.
  • A. Bejan, “General criterion for rating heat-exchanger performance,” Int. J. Heat Mass Transfer, vol. 21, no. 5, pp. 655–658, May 1978. DOI: 10.1016/0017-9310(78)90064-9.
  • A. Sasmito, J. Kurnia, and A. Mujumdar, “Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 376–314, 2011. DOI: 10.1186/1556-276X-6-376.
  • M. T. Jamal-Abad, A. Zamzamian, and M. Dehghan, “Experimental studies on the heat transfer and pressure drop characteristics of Cu–water and Al–water nanofluids in a spiral coil,” Exp. Therm. Fluid Sci., vol. 47, pp. 206–212, May 2013. DOI: 10.1016/j.expthermflusci.2013.02.001.
  • F. I. Doshmanziari, A. E. Zohir, H. R. Kharvani, D. Jalali-Vahid, and M. R. Kadivar, “Characteristics of heat transfer and flow of Al2O3/water nanofluid in a spiral-coil tube for turbulent pulsating flow,” Heat Mass Transfer, vol. 52, no. 7, pp. 1305–1320, Jul. 2016. DOI: 10.1007/s00231-015-1651-y.
  • P. Naphon, “Experimental investigation the nanofluids heat transfer characteristics in horizontal spirally coiled tubes,” Int. J. Heat Mass Transfer, vol. 93, pp. 293–300, Feb. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.089.
  • P. Naphon, T. Arisariyawong, and T. Nualboonrueng, “Nanofluids heat transfer and flow analysis in vertical spirally coiled tubes using Eulerian two-phase turbulent model,” Heat Mass Transfer, vol. 53, no. 7, pp. 2297–2308, Jul. 2017. DOI: 10.1007/s00231-017-1977-8.
  • P. Naphon and S. Wiriyasart, “Pulsating TiO2/water nanofluids flow and heat transfer in the spirally coiled tubes with different magnetic field directions,” Int. J. Heat Mass Transfer, vol. 115, pp. 537–543, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.080.
  • O. Mahian et al., “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transfer, vol. 65, pp. 514–532, Oct. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • V. Bianco, S. Nardini, and O. Manca, “Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 252, Mar. 2011. DOI: 10.1186/1556-276X-6-252.
  • M. Moghaddami, A. Mohammadzade, and S. A. V. Esfehani, “Second law analysis of nanofluid flow,” Energy Convers. Manage., vol. 52, no. 2, pp. 1397–1405, Feb. 2011. DOI: 10.1016/j.enconman.2010.10.002.
  • M. Moghaddami, S. Shahidi, and M. Siavashi, “Entropy generation analysis of nanofluid flow in turbulent and laminar regimes,” J. Comp. Theor. Nanosci., vol. 9, no. 10, pp. 1586–1595, Oct. 2012. DOI: 10.1166/jctn.2012.2249.
  • K. Y. Leong, R. Saidur, T. M. I. Mahlia, and Y. H. Yau, “Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature,” Int. Commun. Heat Mass Transfer, vol. 39, no. 8, pp. 1169–1175, Oct. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.06.009.
  • M. Farzaneh-Gord, H. Ameri, and A. Arabkoohsar, “Tube-in-tube helical heat exchangers performance optimisation by entropy generation minimisation approach,” Appl. Therm. Eng., vol. 108, pp. 1279–1287, Sep. 2016. DOI: 10.1016/j.applthermaleng.2016.08.028.
  • M. Ahadi and A. Abbassi, “Exergy analysis of laminar forced convection of nanofluids through a helical coiled tube with uniform wall heat flux,” IJEX Int. J. Exergy, vol. 13, no. 1, pp. 21–15, 2013. DOI: 10.1504/IJEX.2013.055776.
  • A. Zamzamian, “Entropy generation analysis of EG – Al2O3 nanofluid flows through a helical pipe,” Int. J. Nanosci. Nanotechnol., vol. 10, no. 2, pp. 103–110, Jun. 2014.
  • A. Falahat, “Entropy generation analysis of EG-Al2O3 nanofluid in helical tube and laminar flow,” Int. J. Multidiscipl. Sci. Eng., vol. 2, no. 7, pp. 44–47, Oct. 2011.
  • G. Huminic and A. Huminic, “Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers,” Int. Commun. Heat Mass Transfer, vol. 71, pp. 118–125, Feb. 2016. DOI: 10.1016/j.icheatmasstransfer.2015.12.031.
  • G. Huminic and A. Huminic, “Heat transfer characteristics in double tube helical heat exchangers using nanofluids,” Int. J. Heat Mass Transfer, vol. 54, no. 19–20, pp. 4280–4287, Sep. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.05.017.
  • H. Khosravi-Bizhaem and A. Abbassi, “Effects of curvature ratio on forced convection and entropy generation of nanofluid in helical coil using two-phase approach,” Adv. Powder Technol., vol. 29, no. 4, pp. 890–903, Apr. 2018. DOI: 10.1016/j.apt.2018.01.005.
  • L. Yang and K. Du, “A comprehensive review on heat transfer characteristics of TiO2 nanofluids,” Int. J. Heat Mass Transfer, vol. 108, pp. 11–31, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.086.
  • M. A. Khairul, R. Saidur, M. M. Rahman, M. A. Alim, A. Hossain, and Z. Abdin, “Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids,” Int. J. Heat Mass Transfer, vol. 67, pp. 398–403, Dec. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.030.
  • T. H. Ko and K. Ting, “Entropy generation and thermodynamic optimisation of fully developed laminar convection in a helical coil,” Int. Commun. Heat Mass Transfer, vol. 32, no. 1–2, pp. 214–223, Jan. 2005. DOI: 10.1016/j.icheatmasstransfer.2004.04.039.
  • A. Bejan, “Second-law analysis in heat transfer and thermal design,” Adv. Heat Transfer, vol. 15, pp. 1–58, Jan. 1982. DOI: 10.1016/S0065-2717(08)70172-2..
  • H. K. Bizhaem and A. Abbassi, “Numerical study on heat transfer and entropy generation of developing laminar nanofluid flow in helical tube using two-phase mixture model,” Adv. Powder Technol., vol. 28, no. 9, pp. 2110–2125, Sep. 2017. DOI: 10.1016/j.apt.2017.05.018.
  • O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, “Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study,” Int. J. Heat Mass Transfer, vol. 99, pp. 792–804, Aug. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.045.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transfer, vol. 11, no. 2, pp. 151–170, Apr. 1998. DOI: 10.1080/08916159808946559.
  • M. Corcione, “Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1536–1546, Sep. 2010. DOI: 10.1016/j.ijthermalsci.2010.05.005.
  • A. A. Abbasian Arani and J. Amani, “Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop,” Exp. Therm. Fluid Sci., vol. 42, pp. 107–115, Oct. 2012. DOI: 10.1016/j.expthermflusci.2012.04.017.
  • A. R. Sajadi and M. H. Kazemi, “Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube,” Int. Commun. Heat Mass Transfer, vol. 38, no. 10, pp. 1474–1478, Dec. 2011. DOI: 10.1016/j.icheatmasstransfer.2011.07.007.
  • R. V. Pinto and F. A. S. Fiorelli, “Review of the mechanisms responsible for heat transfer enhancement using nanofluids,” Appl. Therm. Eng., vol. 108, pp. 720–739, Sep. 2016. DOI: 10.1016/j.applthermaleng.2016.07.147.
  • M. M. Heyhat and F. Kowsary, “Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe,” J. Heat Transfer, vol. 132, no. 6, pp. 062401, Jun. 2010. DOI: 10.1115/1.4000743.
  • R. H. Patil, “Experimental studies on heat transfer to Newtonian fluids through spiral coils,” Exp. Therm. Fluid Sci., vol. 84, pp. 144–155, Jun. 2017. DOI: 10.1016/j.expthermflusci.2017.02.002.
  • P. Naphon and J. Suwagrai, “Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes,” Int. J. Heat Mass Transfer, vol. 50, no. 3–4, pp. 444–451, Feb. 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.002.
  • O. Mahian et al., “Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory,” Phys. Rep., vol. 790, pp. 1–48, Feb. 2019. DOI: 10.1016/j.physrep.2018.11.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.