248
Views
4
CrossRef citations to date
0
Altmetric
Articles

Experimental Study of Pool Boiling on Heaters with Nanomodified Surfaces under Saturation

ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Y.-W. Lu and S. G. Kandlikar, “Nanoscale surface modification techniques for pool boiling enhancement—A critical review and future directions,” Heat Trans. Eng., vol. 32, no. 10, pp. 827–842, May 2011. DOI: 10.1080/01457632.2011.548267.
  • M. Shojaeian and A. Koşar, “Pool boiling and flow boiling on micro- and nanostructured surfaces,” Exp. Ther. Fluid Sci., vol. 63, pp. 45–73, May 2015. DOI: 10.1016/j.expthermflusci.2014.12.016.
  • R. Wen, X. Ma, Y.-C. Lee and R. Yang, “Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond,” Joule, vol. 2, no. 11, pp. 2307–2347, Nov. 2018. DOI: 10.1016/j.joule.2018.08.014.
  • C. G. Prakash and R. Prasanth, “Enhanced boiling heat transfer by nano structured surfaces and nanofluids,” Renew. Sustain. Energy Rev., vol. 82, pp. 4028–4043, Feb. 2018. DOI: 10.1016/j.rser.2017.10.069.
  • G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass. Tran., vol. 128, pp. 892–933, Jan. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.026.
  • X. Dai, et al., “Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings,” Appl. Phys. Lett., vol. 102, no. 16, pp. 161605-1–161605-5, Apr. 2013. DOI: 10.1063/1.4802804.
  • H. Jo, S. Kim, H. Kim, J. Kim and M. Kim, “Nucleate boiling performance on nano/microstructures with different wetting surfaces,” Nanoscale. Res. Lett., vol. 7, no. 1, pp. 242-1–242-9, May 2012. DOI: 10.1186/1556-276x-7-242.
  • H. Jo, H. S. Ahn, S. Kang and M. H. Kim, “A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,” Int. J. Heat Mass. Tran., vol. 54, no. 25–26, pp. 5643–5652, Dec. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.001.
  • A. Betz, J. Jenkins, C.-J. Kim and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass. Tran., vol. 57, no. 2, pp. 733–741, Feb. 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.080.
  • M. Zupančič, M. Steinbücher, P. Gregorčič and I. Golobič, “Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces,” Appl. Ther. Eng., vol. 91, pp. 288–297, Aug. 2015. DOI: 10.1016/j.applthermaleng.2015.08.026.
  • M. M. Rahman and M. McCarthy, “Boiling enhancement on nanostructured surfaces with engineered variations in wettability and thermal conductivity,” Heat Trans. Eng., vol. 38, no. 14–15, pp. 1285–1295, Mar. 2017. DOI: 10.1080/01457632.2016.1242961.
  • A. R. Motezakker, et al., “Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling,” Int. J. Heat Mass. Tran., vol. 135, pp. 164–174, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.139.
  • A. Surtaev, V. Serdyukov and A. Pavlenko, “Nanotechnologies for thermophysics: heat transfer and crisis phenomena at boiling,” Nanotechnol. Russia, vol. 11, no. 11–12, pp. 696–715, Aug. 2016. DOI: 10.1134/S1995078016060197.
  • R. Chen, et al., “Nanowires for enhanced boiling heat transfer,” Nano Lett., vol. 9, no. 2, pp. 548–553, Feb. 2009. DOI: 10.1021/nl8026857.
  • M. C. Lu, R. Chen, V. Srinivasan, V. P. Carey and A. Majumdar, “Critical heat flux of pool boiling on Si nanowire array-coated surfaces,” Int. J. Heat Mass. Tran., vol. 54, no. 25–26, pp. 5359–5367, Dec. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.08.007.
  • Z. Yao, Y. Lu and S. Kandlikar, “Effects of nanowire height on pool boiling performance of water on silicon chips,” Int. J. Therm. Sci., vol. 50, no. 11, pp. 2084–2090, Nov. 2011. DOI: 10.1016/j.ijthermalsci.2011.06.009.
  • Z. Yao, Y.-W. Lu and S. G. Kandlikar, “Pool boiling heat transfer enhancement through nanostructures on silicon microchannels,” J. Nanotechnol. Eng. Med., vol. 3, no. 3, pp. 031002-1–031002-8, Aug. 2012. DOI: 10.1115/1.4007425.
  • B. S. Kim, et al., “Stable and uniform heat dissipation by nucleate-catalytic nanowires for boiling heat transfer,” Int. J. Heat Mass. Tran., vol. 70, pp. 23–32, Mar. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.061.
  • C. Li, et al., “Nanostructured copper interfaces for enhanced boiling,” Small, vol. 4, no. 8, pp. 1084–1088, Aug. 2008. DOI: 10.1002/smll.200700991.
  • M. Şeşen, W. Khudhayer, T. Karabacak, and A. Koşar, “Compact nanostructure integrated pool boiler for microscale cooling applications,” Micro Nano Lett., vol. 5, no. 4, pp. 203–206, Sep. 2010. DOI: 10.1049/mnl.2010.0070.
  • Z. Yao, Y.-W. Lu and S. G. Kandlikar, “Direct growth of copper nanowires on a substrate for boiling applications,” Micro Nano Lett., vol. 6, no. 7, pp. 563–566, Aug. 2011. DOI: 10.1049/mnl.2011.0136.
  • B. Shi, Y.-B. Wang and K. Chen, “Pool boiling heat transfer enhancement with copper nanowire arrays,” Appl. Ther. Eng., vol. 75, pp. 115–121, Jan. 2015. DOI: 10.1016/j.applthermaleng.2014.09.040.
  • T. J. Hendricks, S. Krishnan, C. Choi, C.-H. Chang and B. Paul, “Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper,” Int. J. Heat Mass. Tran., vol. 53, no. 15–16, pp. 3357–3365, Jul. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.02.025.
  • D. Lee, T. Kim, S. Park, S. S. Lee and S. H. Ko, “Zinc oxide nanowire forest for pool boiling heat transfer,” Jpn. J. Appl. Phys., vol. 51, no. 11S, pp. 11PE11, Nov. 2012. DOI: 10.1143/jjap.51.11pe11.
  • Y. Chen, D. Mo, H. Zhao, N. Ding and S. Lu, “Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays,” Sci. China Ser. E-Technol. Sci., vol. 52, no. 6, pp. 1596–1600, Jun. 2009. DOI: 10.1007/s11431-009-0195-0.
  • J. Xu, M. Yang, J. Xu and X. Ji, “Vertically oriented TiO2 nanotube arrays with different anodization times for enhanced boiling heat transfer,” Sci. China Technol. Sci., vol. 55, no. 8, pp. 2184–2190, Aug. 2012. DOI: 10.1007/s11431-012-4892-8.
  • S. Das, B. Saha and S. Bhaumik, “Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure,” Exp. Ther. Fluid Sci., vol. 81, pp. 454–465, Feb. 2017. DOI: 10.1016/j.expthermflusci.2016.09.009.
  • Z. Huang, N. Geyer, P. Werner, J. de Boor and U. Gösele, “ Metal-assisted chemical etching of silicon: a review,” Adv. Mater, vol. 23, no. 2, pp. 285–308, Jan. 2011. DOI: 10.1002/adma.201001784.
  • M. McCarthy, K. Gerasopoulos, S. C. Maroo and J. A. Hart, “Materials, fabrication, and manufacturing of micro/nanostructured surfaces for phase-change heat transfer enhancement,” Nanoscal. Microscal. Thermophys. Eng., vol. 18, no. 3, pp. 288–310, May. 2014. DOI: 10.1080/15567265.2014.926436.
  • D. Li, et al., “Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires,” Nano Lett., vol. 12, no. 7, pp. 3385–3390, Jun. 2012. DOI: 10.1021/nl300049f.
  • K.-H. Chu, Y. S. Joung, R. Enright, C. R. Buie and E. N. Wang, “Hierarchically structured surfaces for boiling critical heat flux enhancement,” Appl. Phys. Lett., vol. 102, no. 15, pp. 151602-1–151602-4, Mar. 2013. DOI: 10.1063/1.4801811.
  • S. Y. Khmel, et al., “Synthesis of silicon oxide nanowires by the GJ EBP CVD method using different diluent gases,” Phys. Status Solidi A, vol. 213, no. 7, pp. 1774–1782, Mar. 2016. DOI: 10.1002/pssa.201532955.
  • A. O. Zamchiy, E. A. Baranov and S. Y. Khmel, “Tin-catalyzed oriented array of microropes of silicon oxide nanowires synthesized on different substrates,” Vacuum, vol. 147, pp. 99–106, Jan. 2018. DOI: 10.1016/j.vacuum.2017.10.028.
  • E. A. Baranov, S. Y. Khmel and A. O. Zamchiy, “Synthesis of amorphous silicon films with high growth rate by gas-jet electron beam plasma chemical vapor deposition method,” IEEE Trans. Plasma Sci., vol. 42, no. 10, pp. 2794–2795 00004-1–00004-4, Sep. 2014. DOI: 10.1109/TPS.2014.2352392.
  • S. Y. Khmel, et al., “Influence of substrate temperature on the morphology of silicon oxide nanowires synthesized using a tin catalyst: influence of substrate temperature on the morphology of silicon oxide nanowires,” Phys. Status Solidi A, vol. 213, no. 7, pp. 1790–1795, Apr. 2016. DOI: 10.1002/pssa.201532960.
  • E. Baranov, et al., “Influence of thin fluoropolymer film deposition on wettability of the silicon oxide nanowires array,” MATEC Web Conf., vol. 84, pp. 00004-1–00004-4, Nov. 2016. DOI: 10.1051/matecconf/20168400004.
  • J. Drelich, E. Chibowski, D. D. Meng and K. Terpilowski, “Hydrophilic and superhydrophilic surfaces and materials,” Soft Matter., vol. 7, no. 21, pp. 9804–9828, Oct. 2011. DOI: 10.1039/c1sm05849e.
  • W. Hou and Q. Wang, “Stable polytetrafluoroethylene superhydrophobic surface with lotus-leaf structure,” J. Colloid Interface Sci., vol. 333, no. 1, pp. 400–403, May 2009. DOI: 10.1016/j.jcis.2009.01.027.
  • J. Zhang, J. Li and Y. Han, “Superhydrophobic PTFE surfaces by extension,” Macromol. Rapid Commun., vol. 25, no. 11, pp. 1105–1108, Jun. 2004. DOI: 10.1002/marc.200400065.
  • A. Satyaprasad, V. Jain and S. K. Nema, “Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc,” Appl. Surf. Sci., vol. 253, no. 12, pp. 5462–5466, Apr. 2007. DOI: 10.1016/j.apsusc.2006.12.085.
  • A. I. Safonov, et al., “Deposition features and wettability behavior of fluoropolymer coatings from hexafluoropropylene oxide activated by NiCr wire,” Thin Solid Films, vol. 653, pp. 165–172, May 2018. DOI: 10.1016/j.tsf.2018.03.015.
  • K. K. S. Lau, H. G. P. Lewis, S. J. Limb, M. C. Kwan and K. K. Gleason, “Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films,” Thin Solid Films, vol. 395, no. 1–2, pp. 288–291, Sep. 2001. DOI: 10.1016/S0040-6090(01)01287-1.
  • H. Yasuoka, et al., “Fabrication of PTFE thin films by dual catalytic chemical vapor deposition method,” Thin Solid Films, vol. 516, no. 5, pp. 687–690, Jan. 2008. DOI: 10.1016/j.tsf.2007.06.185.
  • S. V. Starinskiy, et al., “Transition from superhydrophilic to superhydrophobic of silicon wafer by a combination of laser treatment and fluoropolymer deposition,” J. Phys. D: Appl. Phys., vol. 51, no. 25, pp. 255307-1–255307-8, Jun. 2018. DOI: 10.1088/1361-6463/aac641.
  • M. Može, M. Zupančič and I. Golobič, “Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology,” Appl. Ther. Eng., vol. 169, pp. 114938, Jan. 2020. DOI: 10.1016/j.applthermaleng.2020.114938.
  • W. M. Rohsenow, “A method of correlating heat transfer data for surface boiling of liquids,” MIT Division of Industrial Cooperation, Cambridge, MA, Technical Rep. No 5 (Heat Transfer Laboratory), 1951. https://dspace.mit.edu/handle/1721.1/61431
  • V. I. Tolubinskiy, V. A. Antonenko, G. R. Kudritskiy and Y. N. Ostrovskiy, “Heat transfer for boiling on a small surface,” Ind. Heat Eng., vol. 9, no. 4, pp. 3–16, Aug. 1987.
  • I. L. Pioro, “Experimental evaluation of constants for the Rohsenow pool boiling correlation,” Int. J. Heat Mass. Tran., vol. 42, no. 11, pp. 2003–2013, Jun. 1999. DOI: 10.1016/S0017-9310(98)00294-4.
  • D. I. Shim, G. Choi, D. Lee, N. Lee and H. H. Cho, “Bubble dynamics and pool boiling performance on biphilic patterned surfaces,” Proc. of the 16th Int. Heat Transfer Conf., IHTC-16, IHTC16-23399, pp. 1–7. Beijing, China, Aug. 10–15, 2018.
  • E. Teodori, et al., “Effect of extreme wetting scenarios on pool boiling conditions,” Appl. Ther. Eng., vol. 115, pp. 1424–1437, Mar. 2017. DOI: 10.1016/j.applthermaleng.2016.11.079.
  • T. P. Allred, J. A. Weibel and S. V. Garimella, “Enabling highly effective boiling from superhydrophobic surfaces,” Phys. Rev. Lett., vol. 120, no. 17, pp. 17450-1–17450-6, Apr. 2018. DOI: 10.1103/PhysRevLett.120.174501.
  • M. Može, M. Senegačnik, P. Gregorčič, M. Hočevar, M. Zupančič and I. Golobič, “Laser-engineered microcavity surfaces with a nanoscale superhydrophobic coating for extreme boiling performance,” ACS Appl. Mater. Interfaces, vol. 12, no. 21, pp. 24419–24431, Apr. 2020. DOI: 10.1021/acsami.0c01594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.