122
Views
2
CrossRef citations to date
0
Altmetric
Articles

Heat Transfer and Flow Behaviors of Ferrofluid in Three-Start Helically Fluted Tubes

, , , &

References

  • P. Naphon and L. Nakharintr, “Heat transfer of nanofluids in the mini-rectangular fin heat sinks,” Int. Comm. Heat Mass Transfer, vol. 40, pp. 25–31, Jan. 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.012.
  • P. Naphon and L. Nakharintr, “Turbulent two-phase approach model for the nanofluids heat transfer analysis flowing through the minichannel heat sinks,” Int. J. Heat Mass Transfer, vol. 82, pp. 388–395, Mar. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.024.
  • P. Naphon, “Experimental investigation the nanofluids heat transfer characteristics in horizontal spirally coiled tubes,” Int. J. Heat Mass Transfer, vol. 93, pp. 293–300, Feb. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.089.
  • P. Naphon, S. Wiriyasart, T. Arisariyawong and T. Nualboonrueng, “Magnetic field effect on the nanofluids convective heat transfer and pressure drop in the spirally coiled tubes,” Int. J. Heat Mass Transfer, vol. 110, pp. 739–745, Jul. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.077.
  • L. Nakharintr, P. Naphon and S. Wiriyasart, “Effect of jet-plate spacing to jet diameter ratios on nanofluids heat transfer in a mini-channel heat sink,” Int. J. Heat Mass Transfer, vol. 116, pp. 352–361, Jan. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.037.
  • P. Naphon, L. Nakharintr and S. Wiriyasart, “Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink,” Int. J. Heat Mass Transfer, vol. 126, pp. 924–932, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.101.
  • P. Naphon, S. Wiriyasart and T. Arisariyawong, “Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field,” Int. J. Heat Mass Transfer, vol. 118, pp. 1152–1159, Mar. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.091.
  • P. Naphon, S. Wiriyasart, T. Arisariyawong and L. Nakharintr, “ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink,” Int. J. Heat Mass Transfer, vol. 131, pp. 329–340, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.073.
  • K. Wongcharee and S. Eiamsa-Ard, “Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape,” Int. Comm. Heat Mass Transfer, vol. 39, no. 2, pp. 251–257, Feb. 2012. DOI: 10.1016/j.icheatmasstransfer.2011.11.010.
  • A. A. R. Darzi, M. Farhadi, K. Sedighi, R. Shafaghat and K. Zabihi, “Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes,” Int. Comm. Heat Mass Transfer, vol. 39, no. 9, pp. 1425–1434, Nov. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.07.027.
  • A. A. R. Darzi, M. Farhadi, K. Sedighi, S. Aallahyari and M. A. Delavar, “Turbulent heat transfer of Al2O3–water nanofluid inside helically corrugated tubes: Numerical study,” Int. Comm. Heat Mass Transfer, vol. 41, pp. 68–75, Feb. 2013. DOI: 10.1016/j.icheatmasstransfer.2012.11.006.
  • M. A. Khairul, A. Hossain, R. Saidur and M. A. Alim, “Prediction of heat transfer performance of CuO/water nanofluids flow in spirally corrugated helically coiled heat exchanger using fuzzy logic technique,” Computers Fluids, vol. 100, pp. 123–129, Sep. 2014. DOI: 10.1016/j.compfluid.2014.05.007.
  • A. A. R. Darzi, M. Farhadi and K. Sedighi, “Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube,” Experimental Thermal Fluid Sci., vol. 57, pp. 188–199, Sep. 2014. DOI: 10.1016/j.expthermflusci.2014.04.024.
  • C. Qi, Y. L. Wan, C. Y. Li, D. T. Han and Z. H. Rao, “Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube,” Int. J. Heat Mass Transfer, vol. 115, pp. 1072–1084, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.098.
  • P. Naphon and S. Wiriyasart, “Pulsating flow and magnetic field effects on the convective heat transfer of TiO2-water nanofluids in helically corrugated tube,” Int. J. Heat Mass Transfer, vol. 125, pp. 1054–1060, Oct. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.015.
  • P. Naphon, T. Arisariyawong, S. Wiriyasart and A. Srichat, “ANFIS for analysis friction factor and Nusselt number of pulsating nanofluids flow in the fluted tube under magnetic field,” Case Stud. Thermal Engin., vol. 18, pp. 100605, Apr. 2020. DOI: 10.1016/j.csite.2020.100605.
  • F. Xin, Z. Liu, N. Zheng, P. Liu and W. Liu, “Numerical study on flow characteristics and heat transfer enhancement of oscillatory flow in a spirally corrugated tube,” Int. J. Heat Mass Transfer, vol. 127, pp. 402–413, Dec. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.139.
  • G. Wang, C. Qi, M. Liu, C. Li, Y. Yan and L. Liang, “Effect of corrugation pitch on thermo-hydraulic performance of nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency,” Energy Conversion Manage., vol. 186, pp. 51–65, Apr. 2019. DOI: 10.1016/j.enconman.2019.02.046.
  • S. Mei, C. Qi, T. Luo, X. Zhai and Y. Yan, “Effects of magnetic field on thermo-hydraulic performance of Fe3O4-water nanofluids in a corrugated tube,” Int. J. Heat Mass Transfer, vol. 128, pp. 24–45, Jan. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.08.071.
  • Y. Zhang, F. Zhou and J. Kang, “Flow and heat transfer in drag-reducing polymer solution flow through the corrugated tube and circular tube,” Appl. Thermal Engin., vol. 174, pp. 1185, Jun. 2020. DOI: 10.1016/j.applthermaleng.2020.115185..
  • C. Yang, G. Liu, J. Zhang and J. Y. Qian, “Thermohydraulic analysis of hybrid smooth and spirally corrugated tubes,” Int. J. Thermal Sciences, vol. 158, pp. 106520, Dec. 2020. DOI: 10.1016/j.ijthermalsci.2020.106520.
  • J. Y. Qian, C. Yang, M. R. Chen and Z. J. Jin, “Thermohydraulic performance evaluation of multi-start spirally corrugated tubes,” Int. J. Heat Mass Transfer, vol. 156, pp. 119876, Aug. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119876.
  • M. A. Ahmed, M. Z. Yusoff and N. H. Shuaib, “Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid,” Int. Comm. Heat Mass Transfer, vol. 42, pp. 69–74, Mar. 2013. DOI: 10.1016/j.icheatmasstransfer.2012.12.012.
  • M. A. Ahmed, M. Z. Yusoff, K. C. Ng and N. H. Shuai, “Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid,” Case Stud. Thermal Engineering, vol. 4, pp. 65–75, Nov. 2014. DOI: 10.1016/j.csite.2014.07.001.
  • M. A. Ahmed, M. Z. Yusoff, K. C. Ng and N. H. Shuai, “Numerical investigations on the turbulent forced convection of nanofluids flow in a triangular-corrugated channel,” Case Stud. Thermal Engineering, vol. 6, pp. 212–225, Sep. 2015. DOI: 10.1016/j.csite.2015.10.002.
  • M. A. Ahmed, M. Z. Yusoff, K. C. Ng and N. H. Shuai, “Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid,” Case Stud. Thermal Engineering, vol. 6, pp. 77–92, Sep. 2015. DOI: 10.1016/j.csite.2015.07.003.
  • F. Selimefendigil and H. F. Oztop, “Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall,” Int. J. Heat Mass Transfer, vol. 110, pp. 231–247, Jul. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.010.
  • R. K. Ajeel, W. S. I. W. Salim and K. Hasna, “Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped,” Case Stud. Thermal Engineering, vol. 12, pp. 620–635, Sep. 2018. DOI: 10.1016/j.csite.2018.08.002.
  • R. K. Ajeel, W. S. I. W. Salim and K. Hasnan, “Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid,” Int. Comm. Heat Mass Transfer, vol. 101, pp. 1–9, Feb. 2019. DOI: 10.1016/j.icheatmasstransfer.2018.12.016.
  • R. K. Ajeel, et al., “Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study,” Int. J. Heat Mass Transfer, vol. 145, pp. 118806, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118806.
  • R. K. Ajeel, W. S. I. W. Salim and K. Hasnan, “Numerical investigations of heat transfer enhancement in a house shaped corrugated channel: Combination of nanofluid and geometrical parameters,” Thermal Sci. Engineering Progress, vol. 17, pp. 100376, Jun. 2020. DOI: 10.1016/j.tsep.2019.100376.
  • R. K. Ajeel, K. Sopian and R. Zulkifli, “A novel curved-corrugated channel model: Thermal-hydraulic performance and design parameters with nanofluid,” Int. Comm. Heat Mass Transfer, vol. 120, pp. 105037, Jan. 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105037.
  • A. A. R. Darzi, M. Abuzadeh and M. Omidi, “Numerical investigation on thermal performance of coiled tube with helical corrugated wall,” Int. J. Thermal Sciences, vol. 161, pp. 11, Mar. 2021. DOI: 10.1016/j.ijthermalsci.2020.106759..
  • J. Y. Qian, et al., “Analysis of fouling in six-start spirally corrugated tubes,” Heat Transfer Engin., vol. 41, no. 22, pp. 1885–1900, Oct. 2020. DOI: 10.1080/01457632.2019.1675246.
  • C. Yang, et al., “Heat transfer study of a hybrid smooth and spirally corrugated tube,” Heat Transfer Engin., vol. 42, no. 3–4, pp. 242–250, Dec. 2021. DOI: 10.1080/01457632.2019.1699292.
  • S. Bhattacharyya, A. C. Benim, R. Bennacer and K. Dey, “Influence of broken twisted tape on heat transfer performance in novel axial corrugated tubes: Experimental and Numerical Study,” Heat Transfer Engin., vol. 43, no. 3-5, pp. 1–25, 2021. (in press). DOI: 10.1080/01457632.2021.1875168.
  • W. Wang, et al., “Entropy study on the enhanced heat transfer mechanism of the coupling of detached and spiral vortex fields in spirally corrugated tubes,” Heat Transfer Engin., vol. 42, no. 17, pp. 1417–1431, 2021. (in press). DOI: 10.1080/01457632.2020.1800251.
  • S. A. Upalkar, S. Kumar and S. Krishnan, “Analysis of fluid flow and heat transfer in corrugated porous fin heat sinks,” Heat Transfer Engin., vol. 42, no. 18, pp. 1539–1556, 2021. (in press). DOI: 10.1080/01457632.2020.1807099.
  • A. Hojati, M. A. A. Behabadi, P. Hanafizadeh and M. M. Ahmadpour, “An experimental investigation on R134a evaporation inside an internally discrete inclined grooved tube,” Heat Transfer Engin., vol. 43, no. 1, pp. 1–14, 2020. (in press). DOI: 10.1080/01457632.2020.1844444.
  • S. Z. Heris, S. G. Etemad and M. N. Esfahany, “Experimental investigation of oxide nanofluids laminar flow convective heat transfer,” Int. Commun. Heat Mass Transfer, vol. 33, no. 4, pp. 529–535, Apr. 2006. DOI: 10.1016/j.icheatmasstransfer.2006.01.005.
  • V. Bianco, F. Chiacchio, O. Manca and S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes,” Appl. Thermal Eng, vol. 29, no. 17–18, pp. 3632–3642, Dec. 2009. DOI: 10.1016/j.applthermaleng.2009.06.019.
  • M. H. Fard, M. N. Esfahany and M. R. Talaie, “Numerical study of convective heat transfer of nanofluids in a circular tube two-phase m model versus single-phase model,” Int. Commun. Heat Mass Transfer, vol. 37, no. 1, pp. 91–97, Jan. 2010. DOI: 10.1016/j.icheatmasstransfer.2009.08.003.
  • M. Akbari, N. Galanis and A. Benzamehr, “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,” Int. J. Thermal Sci., vol. 50, no. 8, pp. 1343–1354, Aug. 2011. DOI: 10.1016/j.ijthermalsci.2011.03.008.
  • M. Kalteh, A. Abbassi, M. Saffar-Avval and J. Harting, “Euleriane-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a micro-channel,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 107–116, Feb. 2011. DOI: 10.1016/j.ijheatfluidflow.2010.08.001.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experiment Heat Transfer, vol. 11, no. 2, pp. 151–170, Apr. 1998. DOI: 10.1080/08916159808946559.
  • Y. Xuan and W. Roetzel, “Conceptions of heat transfer correlation of nanofluids,” Int. J. Heat Mass Transfer, vol. 43, no. 19, pp. 3701–3707, Oct. 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids. Berlin: Springer, 1999.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. Oxford, UK: Clarendon Press, Oxford University, 1881.
  • B. S. Petukhov, “Heat transfer and friction in turbulent pipe flow with variable physical properties,” in Advances in Heat Transfer, James P. Hartnett, Thomas F. Irvine, Eds. Elsevier, May 1970, vol. 6, pp. 503–564. DOI: 10.1016/S0065-2717(08)70153-9. Academic Press
  • P. Konakov, “A new correlation for the friction coefficient in smooth tubes,” Berichte Der Akademie Der Wissenschaften Der UdSSR L1, vol. 34, pp. 503–506, 1964.
  • P. Naphon, M. Nuchjapo and J. Kurujareon, “Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib,” Energy Conversion Manage., vol. 47, no. 18–19, pp. 3031–3044, Nov. 2006. DOI: 10.1016/j.enconman.2006.03.023.
  • Z. J. Jin, F. Q. Chen, Z. X. Gao, X. F. Gao and J. Y. Qian, “Effects of pitch and corrugation depth on heat transfer characteristics in six-start spirally corrugated tube,” Int. J. Heat Mass Transfer, vol. 108, pp. 1011–1025, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.091.
  • L. Nakharinte, P. Naphon and S. Wiriyasart, “Eulerian two-phase model analysis on jet impingement nanofluids heat transfer in heat sinks,” JPHMT, vol. 14, no. 4, pp. 511–532, Nov. 2017. DOI: 10.17654/HM014040511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.