378
Views
5
CrossRef citations to date
0
Altmetric
Articles

Thermal Conductivity of Ionic Liquid-Based Nanofluids Containing Magnesium Oxide and Aluminum Oxide Nanoparticles

, &

References

  • T. C. Paul, A. M. K. M. Morshed and J. A. Khan, “Nanoparticle enhanced ionic liquid (NEILS) as working fluid for the next generation solar collector,” Procedia Eng., vol. 56, pp. 631–636, May 2013. DOI: 10.1016/j.proeng.2013.03.170.
  • W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Eng., vol. 29, no. 5, pp. 432–460, May 2008. DOI: 10.1080/01457630701850851.
  • H. S. Aybar, M. Sharifpur, M. R. Azizian, M. Mehrabi and J. P. Meyer, “A review of thermal conductivity models for nanofluids,” Heat Transfer Eng., vol. 36, no. 13, pp. 1085–1110, Sep. 2015. DOI: 10.1080/01457632.2015.987586.
  • S. M. S. Murshed, “Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids,” Heat Transfer Eng., vol. 33, no. 8, pp. 722–731, Jun. 2012. DOI: 10.1080/01457632.2011.635986.
  • D. R. MacFarlane, M. Kar and J. M. Pringle, Fundamentals of Ionic Liquids: From Chemistry to Applications. Weinheim, Germany: Wiley-VCH, 2017.
  • M. Smiglak, et al., “Ionic liquids for energy, materials, and medicine,” Chem. Commun. (Camb)., vol. 50, no. 66, pp. 9228–9250, May 2014. DOI: 10.1039/c4cc02021a.
  • X. Fan, Y. Chen and C. Su, “Densities and viscosities of binary liquid mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with acetone, methyl ethyl ketone and N-methyl-2-pyrrolidone,” J. Taiwan Inst. Chem. Eng., vol. 61, pp. 117–123, Apr. 2016. DOI: 10.1016/j.jtice.2016.01.004.
  • R. Haghbakhsh and S. Raeissi, “A novel of correlative approach for ionic liquid thermal conductivities,” J. Mol. Liq., vol. 236, pp. 214–219, Jun. 2017. DOI: 10.1016/j.molliq.2017.03.117.
  • O. Ciocirlan, O. Croitoru and O. Iulian, “Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents,” J. Chem. Thermodyn., vol. 101, pp. 285–292, Oct. 2016. DOI: 10.1016/j.jct.2016.06.015.
  • V. K. Sharma, S. Solanki and S. Bhagour, “Excess heat capacities of binary and ternary mixtures containing 1-ethyl-3-methylimidazolium tetrafluoroborate and anilines,” J. Chem. Eng. Data, vol. 59, no. 6, pp. 1852–1864, May 2014. DOI: 10.1021/je401098b.
  • E. Quijada-Maldonado, S. van der Boogaart, J. H. Lijbers, G. W. Meindersma and A. B. de Haan, “Experimental densities, dynamic viscosities and surface tension of ionic liquids series 1-ethyl-3-methylimidazolium acetate and dicyanamide and their binary and ternary mixtures with water and ethanol at T = (298.15-343-15 K),” J. Chem. Thermodyn., vol. 51, pp. 51–58, Aug. 2012. DOI: 10.1016/j.jct.2012.02.027.
  • P. Fröba, et al., “Thermal conductivity of ionic liquids: Measurement and prediction,” Int. J. Thermophys., vol. 31, no. 11–12, pp. 2059–2077, Dec. 2010. DOI: 10.1007/s10765-010-0889-3.
  • C. Su, X. Liu, C. Zhu and M. He, “Isobaric molar heat capacities of 1-ethyl-3-methylimidazolium acetate and 1-hexyl-3-methylimidazolium acetate up to 16 MPa,” Fluid Ph. Equilibria, vol. 427, pp. 187–193, Nov. 2016. DOI: 10.1016/j.fluid.2016.06.054.
  • P. Navarro, M. Larriba, E. Rojo, J. García and F. Rodríguez, “Thermal properties of cyano-based ionic liquids,” J. Chem. Eng. Data, vol. 58, no. 8, pp. 2187–2193, Jul. 2013. DOI: 10.1021/je400140n.
  • P. Navarro, M. Larriba, J. García and F. Rodríguez, “Thermal stability and specific heats of [emim][DCA] + [emim][TCM] mixed ionic liquids,” Thermochim. Acta, vol. 588, pp. 22–27, Jul. 2014. DOI: 10.1016/j.tca.2014.04.026.
  • C. A. Nieto de Castro, et al., “Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidium liquids,” J. Chem. Eng. Data, vol. 55, no. 2, pp. 653–661, Nov. 2010. DOI: 10.1021/je900648p.
  • B. Wang, X. Wang, W. Lou and J. Hao, “Ionic liquid-based stable nanofluids containing gold nanoparticles,” J Colloid Interface Sci., vol. 362, no. 1, pp. 5–14, Oct. 2011. DOI: 10.1016/j.jcis.2011.06.023.
  • E. B. Fox, A. E. Visser, N. J. Bridges and J. W. Amoroso, “Thermophysical properties of nanoparticle-enhanced ionic liquids (NEILs) heat transfer fluids,” Energy Fuels, vol. 27, no. 6, pp. 3385–3393, Apr. 2013. DOI: 10.1021/ef4002617.
  • J. Liu, F. Wang, L. Zhang, X. Fang and Z. Zhang, “Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications,” Renew. Energy, vol. 63, pp. 519–523, Mar. 2014. DOI: 10.1016/j.renene.2013.10.002.
  • J. M. Franca, C. A. Nieto de Castro and A. A. Padua, “Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials,” Phys. Chem. Chem. Phys., vol. 19, no. 26, pp. 17075–17087, May 2017. DOI: 10.1039/c7cp01952a.
  • T. C. Paul, A. K. M. M. Morshed, E. B. Fox and J. A. Khan, “Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal applications,” Appl. Therm. Eng., vol. 110, pp. 1–9, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.08.004.
  • W. Chen, C. Zou and X. Li, “An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector,” Sol. Energy Mater. Sol. Cells, vol. 163, pp. 157–163, Apr. 2017. DOI: 10.1016/j.solmat.2017.01.029.
  • S. Jorjani, M. Mozaffarian and G. Pazuki, “A novel nanodiamond based IoNanofluid: Experimental and mathematical study of thermal properties,” J. Mol. Liq., vol. 271, pp. 211–219, Dec. 2018. DOI: 10.1016/j.molliq.2018.08.116.
  • E. I. Cherecheş, J. I. Prado, M. Cherecheş, A. A. Minea and L. Lugo, “Experimental study on thermophysical properties of alumina nanoparticle enhanced ionic liquids,” J. Mol. Liq., vol. 291, article no. 111332, pp. 111332, Oct. 2019. DOI: 10.1016/j.molliq.2019.111332.
  • K. Oster, C. Hardacre, J. Jacquemin, A. P. Ribeiro and A. Elsinawi, “Ionic liquid-based nanofluids (ionanofluids) for thermal applications: An experimental thermophysical characterization,” Pure Appl. Chem., vol. 91, no. 8, pp. 1309–1340, 2019. DOI: 10.1515/pac-2018-1114.
  • H. Xie, W. Yu and W. Chen, “MgO nanofluids: Higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles,” J. Exp. Nanosci., vol. 5, no. 5, pp. 463–472, Nov. 2010. DOI: 10.1080/17458081003628949.
  • G. Zyla, “Viscosity and thermal conductivity of MgO-EG nanofluids Experimental results and theoretical models predictions,” J. Therm. Anal. Calorim., vol. 129, pp. 171–180, Feb. 2017. DOI: 10.1007/s10973-017-6130-x.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford, UK: Clarendon Press, 1881.
  • N. Tshimanga, M. Sharifpur and J. P. Meyer, “Experimental investigation and model development for thermal conductivity of glycerol-MgO nanofluids,” Heat Transfer Eng., vol. 37, no. 18, pp. 1538–1553, Dec. 2016. DOI: 10.1080/01457632.2016.1151297.
  • Z. Wu, Z. Feng, B. Sundén and L. Wadsö, “A comparative study on thermal conductivity and rheology properties of alumina and multi-walled carbon nanotube nanofluids,” Front. Heat Mass Transf., vol. 5, article no. 18, pp. 10, 2014.
  • Z. Wu, L. Wang, B. Sundén and L. Wadsö, “Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger,” Appl. Therm. Eng., vol. 96, pp. 364–371, Mar. 2016. DOI: 10.1016/j.applthermaleng.2014.10.096.
  • S. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,” Rev. Sci. Instrum., vol. 62, no. 3, pp. 797–804, 1991. DOI: 10.1063/1.1142087.
  • H. O'Hanley, J. Buongiorno, T. McKrell and L. W. Hu, “Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry,” Adv. Mech. Eng., vol. 4, article no. 181079, pp. 181079, Jan. 2012. DOI: 10.1155/2012/181079.
  • R. L. Hamilton and O. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, Aug. 1962. DOI: 10.1021/i160003a005.
  • J. Buongiorno, et al., “A benchmark study on the thermal conductivity of nanofluids,” J. Appl. Phys., vol. 106, no. 9, pp. 094312, article no. 094312, Nov. 2009. DOI: 10.1063/1.3245330.
  • Z. Wu and B. Sundén, “Convective heat transfer performance of aggregate-laden nanofluids,” Int. J. Heat Mass Transfer, vol. 93, pp. 1107–1115, Feb. 2016. 10.1016/j.ijheatmasstransfer.2015.11.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.