241
Views
7
CrossRef citations to date
0
Altmetric
Articles

Heat Transfer Enhancement of Latent Heat Storage Using Novel Quadruple Helical Fins

&

References

  • R. G. Newell, D. Raimi, S. Villanueva and B. Prest, “Global energy outlook 2020: Energy transition or energy addition?,” Resources for the Future, Washington, DC, USA, Rep. 20-05, May, 2020.
  • S. P. Jesumathy, M. Udayakumar, S. Suresh and S. Jegadheeswaran, “An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1298–1306, Jul. 2014. DOI: 10.1016/j.jtice.2014.03.007.
  • T. R. Sathish Kumar, S. Jegadheeswaran and P. Chandramohan, “Performance investigation on fin type solar still with paraffin wax as energy storage media,” J. Therm. Anal. Calorim., vol. 136, no. 1, pp. 101–112, Apr. 2019. DOI: 10.1007/s10973-018-7882-7.
  • A. Solé, et al., “Stability of sugar alcohols as PCM for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 126, pp. 125–134, Jul. 2014. DOI: 10.1016/j.solmat.2014.03.020.
  • N. Xie, et al., “Development of polyurethane acrylate coated salt hydrate/diatomite form-stable phase change material with enhanced thermal stability for building energy storage,” Constr. Build. Mater., vol. 259, pp. 119714, Oct. 2020. DOI: 10.1016/j.conbuildmat.2020.119714.
  • G. Leng, et al., “Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage,” Appl. Energy, vol. 217, pp. 212–220, May 2018. DOI: 10.1016/j.apenergy.2018.02.064.
  • M. Wu, C. Xu and Y. He, “Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules,” Appl. Energy, vol. 121, pp. 184–195, May 2014. DOI: 10.1016/j.apenergy.2014.01.085.
  • S. Lu, Y. Chen, S. Liu and X. Kong, “Experimental research on a novel energy efficiency roof coupled with PCM and cool materials,” Energy Build., vol. 127, pp. 159–169, Sep. 2016. DOI: 10.1016/j.enbuild.2016.05.080.
  • R. M. Saeed, J. P. Schlegel, C. Castano, R. Sawafta and V. Kuturu, “Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM),” J. Energy Storage, vol. 13, pp. 418–424, Oct. 2017. DOI: 10.1016/j.est.2017.08.005.
  • H. Huang, et al., “An experimental investigation on thermal stratification characteristics with PCMs in solar water tank,” Sol. Energy, vol. 177, pp. 8–21, Jan. 2019. DOI: 10.1016/j.solener.2018.11.004.
  • S. M. Salih, J. M. Jalil and S. E. Najim, “Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM,” Renew. Energy, vol. 143, pp. 1053–1066, Dec. 2019. DOI: 10.1016/j.renene.2019.05.050.
  • G. Gholamibozanjani and M. Farid, “Application of an active PCM storage system into a building for heating/cooling load reduction,” Energy, vol. 210, pp. 118572, Nov. 2020. DOI: 10.1016/j.energy.2020.118572.
  • M. Jaworski, “Mathematical model of heat transfer in PCM incorporated fabrics subjected to different thermal loads,” Appl. Therm. Eng., vol. 150, pp. 506–511, Mar. 2019. DOI: 10.1016/j.applthermaleng.2019.01.019.
  • D. M. C. Shastry and U. C. Arunachala, “Thermal management of photovoltaic module with metal matrix embedded PCM,” J. Energy Storage, vol. 28, pp. 101312, Apr. 2020. DOI: 10.1016/j.est.2020.101312.
  • M. E. Nakhchi and J. A. Esfahani, “Improving the melting performance of PCM thermal energy storage with novel stepped fins,” J. Energy Storage, vol. 30, pp. 101424, Aug. 2020. DOI: 10.1016/j.est.2020.101424.
  • A. M. Abdulateef, et al., “Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins,” Int. Commun. Heat Mass Transf., vol. 90, pp. 73–84, Jan. 2018. DOI: 10.1016/j.icheatmasstransfer.2017.10.003.
  • W. Li, et al., “Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam,” Energy, vol. 127, pp. 671–679, May 2017. DOI: 10.1016/j.energy.2017.03.145.
  • A. Mawire, et al., “Dynamic thermal performance of four encapsulated PCM spheres for domestic medium temperature applications,” Energy Proc., vol. 158, pp. 4375–4382, Feb. 2019. DOI: 10.1016/j.egypro.2019.01.781.
  • T. K. Aldoss and M. M. Rahman, “Comparison between the single-PCM and multi-PCM thermal energy storage design,” Energy Convers. Manag., vol. 83, pp. 79–87, Jul. 2014. DOI: 10.1016/j.enconman.2014.03.047.
  • O. S. Elsanusi and E. C. Nsofor, “Melting of multiple PCMs with different arrangements inside a heat exchanger for energy storage,” Appl. Therm. Eng., vol. 185, pp. 116046, Feb. 2021. DOI: 10.1016/j.applthermaleng.2020.116046.
  • S. Jegadheeswaran, S. D. Pohekar and T. Kousksou, “Investigations on thermal storage systems containing micron-sized conducting particles dispersed in a phase change material,” Mater. Renew. Sustain. Energy, vol. 1, no. 1, pp. 5, Dec. 2012. DOI: 10.1007/s40243-012-0005-7.
  • H. Faraji, M. Faraji and M. E. Alami, “Numerical study of the transient melting of nano-enhanced phase change material,” Heat Transf. Eng., vol. 42, no. 2, pp. 120–139, 2021. DOI: 10.1080/01457632.2019.1692496.
  • S. Jegadheeswaran, A. Sundaramahalingam and S. D. Pohekar, “High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1137–1166, Oct. 2019. DOI: 10.1007/s10973-019-08297-3.
  • S. Jegadheeswaran and S. D. Pohekar, “Performance enhancement in latent heat thermal storage system: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2225–2244, Dec. 2009. DOI: 10.1016/j.rser.2009.06.024.
  • H. Shokouhmand and B. Kamkari, “Numerical Simulation of phase change thermal storage in finned double-pipe heat exchanger,” AMM, vol. 232, pp. 742–746, Nov. 2012. DOI: 10.4028/www.scientific.net/AMM.232.742.
  • F. Agyenim, P. Eames and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Sol. Energy, vol. 83, no. 9, pp. 1509–1520, Sep. 2009. DOI: 10.1016/j.solener.2009.04.007.
  • C. Liu and D. Groulx, “Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system,” Int. J. Therm. Sci., vol. 82, pp. 100–110, Aug. 2014. DOI: 10.1016/j.ijthermalsci.2014.03.014.
  • Z. Liu, X. Sun and C. Ma, “Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement,” Energy Convers. Manag., vol. 46, no. 6, pp. 971–984, Apr. 2005. DOI: 10.1016/j.enconman.2004.05.011.
  • K. Hariharan, G. S. S. Kumar, G. Kumaresan and R. Velraj, “Investigation on phase change behavior of paraffin phase change material in a spherical capsule for solar thermal storage units,” Heat Transf. Eng., vol. 39, no. 9, pp. 775–783, 2018. DOI: 10.1080/01457632.2017.1341227.
  • Z. Gao, Y. Yao and H. Wu, “A visualization study on the unconstrained melting of para ffi n in spherical container,” Appl. Therm. Eng., vol. 155, pp. 428–436, Jun. 2019. DOI: 10.1016/j.applthermaleng.2019.03.160.
  • R. Elbahjaoui and H. E. Qarnia, “Transient behavior analysis of the melting of nanoparticle-enhanced phase change material inside a rectangular latent heat storage unit,” Appl. Therm. Eng., vol. 112, pp. 720–738, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.10.115.
  • M. Taghilou and F. Talati, “Analytical and numerical analysis of PCM solidification inside a rectangular finned container with time-dependent boundary condition,” Int. J. Therm. Sci., vol. 133, pp. 69–81, Nov. 2018. DOI: 10.1016/j.ijthermalsci.2018.04.042.
  • A. J. Parry, P. C. Eames and F. B. Agyenim, “Modeling of thermal energy storage shell-and-tube heat exchanger,” Heat Transf. Eng., vol. 35, no. 1, pp. 1–14, 2014. DOI: 10.1080/01457632.2013.810057.
  • S. P. Jesumathy, M. Udayakumar and S. Suresh, “Heat transfer characteristics in latent heat storage system using paraffin wax,” J. Mech. Sci. Technol., vol. 26, no. 3, pp. 959–965, Mar. 2012. DOI: 10.1007/s12206-011-1017-4.
  • H. Liang, J. Niu and Y. Gan, “Performance optimization for shell-and-tube PCM thermal energy storage,” J. Energy Storage, vol. 30, pp. 101421, Aug. 2020. DOI: 10.1016/j.est.2020.101421.
  • A. M. Abdulateef, S. Mat, J. Abdulateef, K. Sopian and A. A. Al-Abidi, “Thermal performance enhancement of triplex tube latent thermal storage using fins-nano-phase change material technique,” Heat Transf. Eng., vol. 39, no. 12, pp. 1067–1080, 2018. DOI: 10.1080/01457632.2017.1358488.
  • M. Alizadeh, K. Hosseinzadeh, M. H. Shahavi and D. D. Ganji, “Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material,” Appl. Therm. Eng., vol. 163, pp. 114436, Dec. 2019. DOI: 10.1016/j.applthermaleng.2019.114436.
  • M. S. Mahdi, H. B. Mahood, A. F. Hasan, A. A. Khadom and A. N. Campbell, “Numerical study on the effect of the location of the phase change material in a concentric double pipe latent heat thermal energy storage unit,” Therm. Sci. Eng. Prog., vol. 11, pp. 40–49, Jun. 2019. DOI: 10.1016/j.tsep.2019.03.007.
  • Y. Pahamli, M. J. Hosseini, A. A. Ranjbar and R. Bahrampoury, “Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger,” Appl. Math. Comput., vol. 316, pp. 30–42, Jan. 2018. DOI: 10.1016/j.amc.2017.07.066.
  • X. Liu, Y. Huang, X. Zhang, C. Zhang and B. Zhou, “Investigation on charging enhancement of a latent thermal energy storage device with uneven tree-like fins,” Appl. Therm. Eng., vol. 179, pp. 115749, Oct. 2020. DOI: 10.1016/j.applthermaleng.2020.115749.
  • K. Hosseinzadeh, E. Montazer, M. B. Shafii and A. R. D. Ganji, “Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles,” J. Energy Storage, vol. 34, pp. 102177, Feb. 2021. DOI: 10.1016/j.est.2020.102177.
  • B. Lu, Y. Zhang, D. Sun, Z. Yuan and S. Yang, “Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit,” Appl. Therm. Eng., vol. 187, pp. 116575, Mar. 2021. DOI: 10.1016/j.applthermaleng.2021.116575.
  • M. Kenisarin and K. Mahkamov, “Solar energy storage using phase change materials,” Renew. Sustain. Energy Rev., vol. 11, no. 9, pp. 1913–1965, Dec. 2007. DOI: 10.1016/j.rser.2006.05.005.
  • F. Agyenim, N. Hewitt, P. Eames and M. Smyth, “A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS),” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 615–628, Feb. 2010. DOI: 10.1016/j.rser.2009.10.015.
  • A. D. Brent, V. R. Voller and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf., vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • M. S. Mahdi, H. B. Mahood, J. M. Mahdi, A. A. Khadom and A. N. Campbell, “Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube,” Energy Convers. Manag., vol. 203, pp. 112238, Jan. 2020. DOI: 10.1016/j.enconman.2019.112238.
  • E. A. Spiegel and G. Veronis, “On the Boussinesq approximation for a compressible fluid,” ApJ, vol. 131, pp. 442–447, Mar. 1960. DOI: 10.1086/146849.
  • M. J. Hosseini, A. A. Ranjbar, M. Rahimi and R. Bahrampoury, “Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems,” Energy Build., vol. 99, pp. 263–272, Jul. 2015. DOI: 10.1016/j.enbuild.2015.04.045.
  • A. K. Hassan, J. Abdulateef, M. S. Mahdi and A. F. Hasan, “Experimental evaluation of thermal performance of two different finned latent heat storage systems,” Therm. Eng. Case Stud., vol. 21, pp. 100675, Oct. 2020. DOI: 10.1016/j.csite.2020.100675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.