211
Views
4
CrossRef citations to date
0
Altmetric
Articles

Boundary Condition Independent Thermal Network Modeling of High-Frequency Power Transformers

, , , &

References

  • J. D. van Wyk and F. C. Lee, “On a future for power electronics,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 2, pp. 59–72, June 2013. DOI: 10.1109/JESTPE.2013.2271499.
  • P. E. Blanco Alonso, A. Meana-Fernández and J. M. Fernández Oro, “Thermal response and failure mode evaluation of a dry-type transformer,” Appl. Therm. Eng., vol. 120, pp. 763–771, Apr. 2017. DOI: 10.1016/j.applthermaleng.2017.04.007.
  • C. J. M. Lasance, “Ten years of boundary-condition- independent compact thermal modeling of electronic parts: A review,” Heat Transfer Eng., vol. 29, no. 2, pp. 149–168, 2008. Jul. DOI: 10.1080/01457630701673188.
  • A. D. Moore, Heat Transfer Notes for Electrical Engineering. Ann Arbor, MI: George Wahr Publishing Company, 1951.
  • R. L. Kotnik, “An equivalent thermal circuit for nonventilated induction motors [includes discussion],” Trans. AIEEE, Part III: Power App. Syst., vol. 73, no. 2, pp. 1604–1609, Jan. 1954. DOI: 10.1109/AIEEPAS.1954.4499009.
  • M. K. Yoon and S. K. Kauh, “Thermal analysis of a small, totally enclosed, fan-cooled induction motor,” Heat Transfer Eng., vol. 26, no. 4, pp. 77–86, Aug. 2005. DOI: 10.1080/01457630590916310.
  • T. Hatakeyama and M. Ishizuka, “Thermal analysis for package cooling technology using phase-change material by using thermal network analysis and CFD analysis with enthalpy porosity method,” Heat Transfer Eng., vol. 35, no. 14–15, pp. 1227–1234, Mar. 15, 2014. DOI: 10.1080/01457632.2013.876340.
  • R. Nowak, J. Duc, B. Samul and A. P. Manjunatha, “A thermal network approach for a quick and accurate study of multiple connected switchgears,” Heat Transfer Eng., vol. 43, no. 3–5, 2022. pp. 183–197. DOI: 10.1080/01457632.2021.1874175.
  • M. P. Sayani, G. R. Skutt and P. S. Venkatraman, “Electrical and thermal performance of PWB transformers,” Presented at the Sixth Annual Applied Power Electronics Conference and Exhibition (APEC), Dallas, TX, 1991, pp. 533–542. DOI: 10.1109/APEC.1991.146229.
  • D. van der Linde, C. A. M. Boon and J. B. Klaassens, “Design of a high-frequency planar power transformer in multilayer technology,” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 135–141, April 1991. DOI: 10.1109/41.88907.
  • S. Purushothaman and F. de Leon, “Heat-transfer model for toroidal transformers,” IEEE Trans. Power Delivery, vol. 27, no. 2, pp. 813–820, April 2012. DOI: 10.1109/TPWRD.2012.2185956.
  • C. Buccella, C. Cecati and F. de Monte, “A coupled electrothermal model for planar transformer temperature distribution computation,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3583–3590, Oct. 2008. DOI: 10.1109/TIE.2008.2003102.
  • J. Biela and J. W. Kolar, “Cooling concepts for high power density magnetic devices,” Presented at the 2007 Power Conversion Conference, Nagoya, Japan, 2007, pp. 1–8. DOI: 10.1109/PCCON.2007.372915.
  • A. Lewaiter and B. Ackermann, “A thermal model for planar transformers,” Presented at the 4th IEEE International Conference on Power Electronics and Drive Systems (IEEE PEDS), vol. 2, Denpasar, Indonesia, 2001, pp. 669–673. DOI: 10.1109/PEDS.2001.975399.
  • R. Shafaei, M. Ordonez and M. A. Saket, “Three-dimensional frequency-dependent thermal model for planar transformers in LLC resonant converters,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4641–4655, May 2019. DOI: 10.1109/TPEL.2018.2859839.
  • R. Bakri, X. Margueron, J. S. Ngoua Teu Magambo, P. L. Moigne and N. Idir, “Automated tool for 3D planar magnetic temperature modelling: Application to EE and E/PLT core‐based components,” IET Power Electron., vol. 12, no. 15, pp. 4043–4053, 2019. no Dec. DOI: 10.1049/iet-pel.2019.0332.
  • V. Bissuel, et al., “Novel approach to the extraction of Delphi-like boundary-condition-independent compact thermal models of planar transformer devices,” Presented at the 24th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Stockholm, Sweden, 2018, pp. 1–7. DOI: 10.1109/THERMINIC.2018.8593283.
  • Y. G. Guo, J. G. Zhu and W. Wu, “Thermal analysis of soft magnetic composite motors using a hybrid model with distributed heat sources,” IEEE Trans. Magn., vol. 41, no. 6, pp. 2124–2128, June 2005. DOI: 10.1109/TMAG.2005.848316.
  • S. C. Mukhopadhyay and S. K. Pal, “Temperature analysis of induction motors using a hybrid thermal model with distributed heat sources,” J. Appl. Phys., vol. 83, no. 11, pp. 6368–6370, 1998. DOI: 10.1063/1.367597.
  • M. Ocak, “Conduction Based Compact Thermal Modeling for Thermal Analysis of Electronic Components,” Ph.D. dissertation, Middle East Technical University, Ankara, Turkey, 2010.
  • M. Jaritz and J. Biela, “Analytical model for the thermal resistance of windings consisting of solid or litz wire,” Presented at the 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2013, pp. 1–10. DOI: 10.1109/EPE.2013.6634624.
  • D. T. Lussier, S. J. Ormiston and R. M. Marko, “Theoretical determination of anisotropic effective thermal conductivity in transformer windings,” Int. Commun. Heat Mass Transfer, vol. 30, no. 3, pp. 313–322, 2003. DOI: 10.1016/S0735-1933(03)00050-2.
  • G. Salinas López, A. D. Expósito, J. Muñoz-Antón, J. Á. O. Ramírez and R. P. López, “Fast and accurate thermal modeling of magnetic components by FEA-based homogenization,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1830–1844, Feb. 2020. DOI: 10.1109/TPEL.2019.2921160.
  • Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials,” J. Mech. Phys. Solids, vol. 11, no. 2, pp. 127–140, 1963. DOI: 10.1016/0022-5096(63)90060-7.
  • D. C. Jiles, J. B. Thoelke and M. K. Devine, “Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis,” IEEE Trans. Magn., vol. 28, no. 1, pp. 27–35, 1992. Jan. DOI: 10.1109/20.119813.
  • J. H. Chan, A. Vladimirescu, X.-C. Gao, P. Liebmann and J. Valainis, “Nonlinear transformer model for circuit simulation,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 10, no. 4, pp. 476–482, Apr. 1991. DOI: 10.1109/43.75630.
  • C. R. Sullivan, “Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two-dimensional or three-dimensional field geometry,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 142–150, 2001. Jan. DOI: 10.1109/63.903999.
  • X. Nan and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” Presented at the IEEE 34th Annual Conference on Power Electronics Specialists (PESC), vol. 2, Acapulco, Mexico, 2003, pp. 853–860, DOI: 10.1109/PESC.2003.1218168.
  • K. Venkatachalam, C. R. Sullivan, T. Abdallah and H. Tacca, “Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters,” Presented at 2002 IEEE Workshop Computers Power Electronics, Mayaguez, PR, Jun. 2002, pp. 3–4. DOI: 10.1109/CIPE.2002.1196712.
  • M. Mogorovic and D. Dujic, “Thermal modeling and experimental verification of an air cooled medium frequency transformer,” Presented at the 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 2017. DOI: 10.23919/EPE17ECCEEurope.2017.8099176.
  • P. L. Dowell, “Effects of eddy currents in transformer windings,” Proc. Inst. Electr. Eng. UK, vol. 113, no. 8, pp. 1387–1394, Aug. 1966. DOI: 10.1049/piee.1966.0236.
  • A. Dey, N. Shafiei, R. Khandekar, W. Eberle and R. Li, “Improving thermal performance of high frequency power transformers using bobbinless transformer design,” Presented at the 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Jul. 21–23, 2020, pp. 291–297. DOI: 10.1109/ITherm45881.2020.9190320.
  • Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals & Applications, 6th ed. New York, NY: McGraw-Hill Education, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.