429
Views
2
CrossRef citations to date
0
Altmetric
Articles

Hydrothermal and Second Law Analyses of Fluid Flow in Converging-Diverging (Hourglass) Microchannel

, &

References

  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron. Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • S. G. Kandlikar, et al., “Heat transfer in microchannels - 2012 status and research needs,” J. Heat Transfer, vol. 135, no. 9, pp. 091001–091018, 2013. DOI: 10.1115/1.4024354.
  • D. Liu and S. V. Garimella, “Flow boiling heat transfer in microchannels,” J. Heat Transfer, vol. 129, no. 10, pp. 1321–1332, 2007. DOI: 10.1115/1.2754944.
  • G. Hedau, P. Dey, R. Raj and S. K. Saha, “Combined effect of inlet restrictor and nanostructure on two-phase flow performance of parallel microchannel heat sinks,” Int. J. Therm. Sci, vol. 153, pp. 106339, Mar. 2020. DOI: 10.1016/j.ijthermalsci.2020.106339.
  • W. Lee and G. Son, “Numerical simulation of bubble growth and heat transfer during flow boiling in a surface-modified microchannel,” Heat Transf. Eng., vol. 35, no. 5, pp. 501–507, 2014. DOI: 10.1080/01457632.2013.833050.
  • V. V. Kuznetsov, A. S. Shamirzaev, I. A. Kozulin and S. P. Kozlov, “Correlation of the flow pattern and flow boiling heat transfer in microchannels,” Heat Transf. Eng, vol. 34, no. 2–3, pp. 235–245, 2013. DOI: 10.1080/01457632.2013.703564.
  • J. R. Thome, “State-of-the-art overview of boiling and two-phase flows in microchannels,” Heat Transf. Eng., vol. 27, no. 9, pp. 4–19, 2006. DOI: 10.1080/01457630600845481.
  • A. Siddique, A. Sharma, A. Agrawal and S. K. Saha, “Numerical study of bubble growth and heat transfer in microchannel using dynamic contact angle models,” Comput. Thermal Sci., vol. 12, no. 1, pp. 41–54, 2020. DOI: 10.1615/ComputThermalScien.2020021272.
  • R. Dey, T. Das and S. Chakraborty, “Frictional and heat transfer characteristics of single-phase microchannel liquid flows,” Heat Transf. Eng, vol. 33, no. 4–5, pp. 425–446, 2012. DOI: 10.1080/01457632.2012.614153.
  • M. E. Steinke, S. G. Kandlikar, J. H. Magerlein, E. G. Colgan and A. D. Raisanen, “Development of an experimental facility for investigating single-phase liquid flow in microchannels,” Heat Transf. Eng., vol. 27, no. 4, pp. 41–52, 2006. DOI: 10.1080/01457630500523774.
  • D. Farnam, B. Sammakia, H. Ackler and K. Ghose, “Comparative analysis of microchannel heat sink configurations subject to a pressure constraint,” Heat Transf. Eng., vol. 30, no. 1–2, pp. 43–53, 2009. DOI: 10.1080/01457630802293324.
  • M. Lorenzini and N. Suzzi, “The influence of geometry on the thermal performance of microchannels in laminar flow with viscous dissipation,” Heat Transf. Eng., vol. 37, no. 13–14, pp. 1096–1104, 2016. DOI: 10.1080/01457632.2015.1111100.
  • L. Chai, G. Xia and J. Qi, “Experimental and numerical study of flow and heat transfer in trapezoidal microchannels,” Heat Transf. Eng., vol. 33, no. 11, pp. 972–981, 2012. DOI: 10.1080/01457632.2012.654731.
  • C. J. Ho, Y. C. Liu, M. Ghalambaz and W. M. Yan, “Forced convection heat transfer of Nano-Encapsulated Phase Change Material (NEPCM) suspension in a mini-channel heatsink,” Int. J. Heat Mass Transf., vol. 155, pp. 119858, May 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119858.
  • A. KoşAr, and Y. Peles, “Thermal-hydraulic performance of MEMS-based pin fin heat sink,” J. Heat Transfer, vol. 128, no. 2, pp. 121–131, 2006. DOI: 10.1115/1.2137760.
  • G. V. Kewalramani, G. Hedau, S. K. Saha and A. Agrawal, “Study of laminar single phase frictional factor and Nusselt number in In-line micro pin-fin heat sink for electronic cooling applications,” Int. J. Heat Mass Transf, vol. 138, pp. 796–808, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.118.
  • T. Izci, M. Koz and A. Koşar, “The effect of micro pin-fin shape on thermal and hydraulic performance of micro pin-fin heat sinks,” Heat Transf. Eng, vol. 36, no. 17, pp. 1447–1457, 2015. DOI: 10.1080/01457632.2015.1010921.
  • T. Coşkun and E. Çetkin, “Heat transfer enhancement in a microchannel heat sink: Nanofluids and/or micro pin fins,” Heat Transf. Eng., vol. 41, no. 21, pp. 1818–1828, 2020. DOI: 10.1080/01457632.2019.1670467.
  • L. H. Chien, W. R. Liao, M. Ghalambaz and W. M. Yan, “Experimental study on convective boiling flow and heat transfer in a microgap enhanced with a staggered arrangement of nucleated micro-pin-fins,” Int. J. Heat Mass Transf, vol. 144, pp. 118653, Sept. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118653.
  • M. M. Rahman, “Measurements of heat transfer in microchannel heat sinks,” Int. Commun. Heat Mass Transf., vol. 27, no. 4, pp. 495–506, 2000. DOI: 10.1016/S0735-1933(00)00132-9.
  • H. Y. Wu and P. Cheng, “An experimental study of convective heat transfer in silicon microchannels with different surface conditions,” Int. J. Heat Mass Transf, vol. 46, no. 14, pp. 2547–2556, 2003. DOI: 10.1016/S0017-9310(03)00035-8.
  • H. Sharma, A. Gaddam, A. Agrawal, S. S. Joshi and S. S. Dimov, “Influence of texture shape and arrangement on thermo-hydraulic performance of the textured microchannels,” Int. J. Therm. Sci, vol. 147, pp. 106146, Oct. 2020. DOI: 10.1016/j.ijthermalsci.2019.106146.
  • Z. Dai, D. F. Fletcher and B. S. Haynes, “Impact of tortuous geometry on laminar flow heat transfer in microchannels,” Int. J. Heat Mass Transf, vol. 83, pp. 382–398, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.12.019.
  • N. Kockmann, M. Engler, D. Haller and P. Woias, “Fluid dynamics and transfer processes in bended microchannels,” Heat Transf. Eng, vol. 26, no. 3, pp. 71–78, 2005. DOI: 10.1080/01457630590907310.
  • Z. L. Chiam, P. S. Lee, P. K. Singh and N. Mou, “Investigation of fluid flow and heat transfer in wavy micro-channels with alternating secondary branches,” Int. J. Heat Mass Transf, vol. 101, pp. 1316–1330, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.097.
  • S. G. Singh, A. Kulkarni, S. P. Duttagupta, B. P. Puranik and A. Agrawal, “Impact of aspect ratio on flow boiling of water in rectangular microchannels,” Exp. Therm. Fluid Sci, vol. 33, no. 1, pp. 153–160, Oct. 2008. DOI: 10.1016/j.expthermflusci.2008.07.014.
  • A. Heydari, et al., “The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel,” J Therm Anal Calorim, vol. 131, no. 3, pp. 2893–2912, 2018. DOI: 10.1007/s10973-017-6746-x.
  • N. A. Cheloii, O. A. Akbari and D. Toghraie, “Computational fluid dynamics and laminar heat transfer of water/Cu nanofluid in ribbed microchannel with a two-phase approach,” HFF, vol. 29, no. 5, pp. 1563–1589, May 2019. DOI: 10.1108/HFF-05-2018-0243.
  • S. G. Singh, S. P. Duttagupta and A. Agrawal, “In situ impact analysis of very high heat flux transients on nonlinear p-n diode characteristics and mitigation using on-chip single- and two-phase microfluidics,” J. Microelectromech. Syst., vol. 18, no. 6, pp. 1208–1219, 2009. DOI: 10.1109/JMEMS.2009.2035371.
  • S. G. Singh, A. Agrawal and S. P. Duttagupta, “Reliable MOSFET operation using two-phase microfluidics in the presence of high heat flux transients,” J. Micromech. Microeng., vol. 21, no. 10, pp. 105002, 2011. DOI: 10.1088/0960-1317/21/10/105002.
  • P. C. Lee and C. Pan, “Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section,” J. Micromech. Microeng., vol. 18, no. 2, pp. 025005, 2008. DOI: 10.1088/0960-1317/18/2/025005.
  • A. Agrawal, V. S. Duryodhan and S. G. Singh, “Pressure drop measurements with boiling in diverging microchannel,” Front. Heat Mass Transf., vol. 3, pp. 013005, Jan. 2012. DOI: 10.5098/hmt.v3.1.3005.
  • G. V. Kewalramani, G. Hedau, S. K. Saha and A. Agrawal, “Effect of short pin fin with different shapes and arrangements on thermal resistance of micro heat sink,” J Enh Heat Transf., vol. 27, no. 6, pp. 491–503, 2020. DOI: 10.1615/JEnhHeatTransf.2020034367.
  • V. S. Duryodhan, A. Singh, S. G. Singh and A. Agrawal, “Convective heat transfer in diverging and converging microchannels,” Int. J. Heat Mass Transf., vol. 80, pp. 424–438, Jan. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.042.
  • Y. Sui, C. J. Teo, P. S. Lee, Y. T. Chew and C. Shu, “Fluid flow and heat transfer in wavy microchannels,” Int. J. Heat Mass Transf., vol. 53, no. 13–14, pp. 2760–2772, Jun. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.02.022.
  • B. Kates and C. L. Ren, “Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications,” Electrophoresis, vol. 27, no. 10, pp. 1967–1976, May 2006. DOI: 10.1002/elps.200500784.
  • S. Mohsenian, A. Ramiar and A. A. Ranjbar, “Numerical investigation of non-Newtonian nanofluid flow in a converging microchannel,” J. Mech. Sci. Technol., vol. 31, no. 1, pp. 385–391, 2017. DOI: 10.1007/s12206-016-1240-0.
  • Y. Sui, P. S. Lee and C. J. Teo, “An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section,” Int. J. Therm. Sci, vol. 50, no. 12, pp. 2473–2482, 2011. DOI: 10.1016/j.ijthermalsci.2011.06.017.
  • S. Goli, S. K. Saha and A. Agrawal, “Three-dimensional numerical study of flow physics of single-phase laminar flow through diamond (diverging–converging) microchannel,” SN Appl. Sci, vol. 1, no. 11, article no. 1353(17 pages), Oct. 2019, 1–17. DOI: 10.1007/s42452-019-1379-2.
  • H. Ghaedamini, P. S. Lee and C. J. Teo, “Developing forced convection in converging–diverging microchannels,” Int. J. Heat Mass Transf., vol. 65, pp. 491–499, Oct. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.036.
  • I. Taymaz, I. Koc and Y. Islamoğlu, “Experimental study on forced convection heat transfer characteristics in a converging diverging heat exchanger channel,” Heat Mass Transfer, vol. 44, no. 10, pp. 1257–1262, Aug. 2008. DOI: 10.1007/s00231-007-0366-0.
  • W. F. Louisos and D. L. Hitt, “Heat Transfer & Viscous Effects in 2D & 3D Supersonic Micro-Nozzle Flows,” Presented at the 37th AIAA Fluid Dynamics Conference, Miami, FL, 2007. Jun. DOI: 10.2514/6.2007-3987.
  • M. K. D. Chakravarthii, D. Mutharasu and S. Shanmugan, “Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging–diverging microchannel heat sink,” Heat Mass Transfer, vol. 53, no. 7, pp. 2265–2277, Jul. 2017. DOI: 10.1007/s00231-017-1978-7.
  • J. Q. Yong and C. J. Teo, “Mixing and Heat Transfer Enhancement in Microchannels Containing Converging-Diverging Passages,” J. Heat Transfer, vol. 136, no. 4, article no. 041704(11 pages), Apr. 2014, 1–11. DOI: 10.1115/1.4026090.
  • C. J. Ho, Y. C. Liu, T. F. Yang, M. Ghalambaz and W. M. Yan, “Convective heat transfer of nano-encapsulated phase change material suspension in a divergent minichannel heatsink,” Int. J. Heat Mass Transf, vol. 165, pp. 120717, Nov. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120717.
  • V. S. Duryodhan, A. Singh, S. G. Singh and A. Agrawal, “A simple and novel way of maintaining constant wall temperature in microdevices,” Sci Rep, vol. 6, pp. 18230, Jan. 2016. DOI: 10.1038/srep18230.
  • L. Gosselin and A. Bejan, “Tree networks for minimal pumping power,” Int. J. Therm. Sci, vol. 44, no. 1, pp. 53–63, Jan. 2005. DOI: 10.1016/j.ijthermalsci.2004.06.004.
  • T.-H. Tsai and R. Chein, “Simple model for predicting microchannel heat sink performance and optimization,” Heat Mass Transfer, vol. 48, no. 5, pp. 789–798, May 2012. DOI: 10.1007/s00231-011-0933-2.
  • L. Chai, G. D. Xia and H. S. Wang, “Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls – Part 3: Performance evaluation,” Int. J. Heat Mass Transf, vol. 97, pp. 1091–1101, Jun. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.075.
  • J. Zhang, Y. Zhao, Y. Diao and Y. Zhang, “An experimental study on fluid flow and heat transfer in a multiport minichannel flat tube with micro-fin structures,” Int. J. Heat Mass Transf, vol. 84, pp. 511–520, May 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.049.
  • S. Chakraborty and S. Ray, “Performance optimization of laminar fully developed flow through square ducts with rounded corners,” Int. J. Therm. Sci, vol. 50, no. 12, pp. 2522–2535, 2011. DOI: 10.1016/j.ijthermalsci.2011.06.006.
  • N. H. Webb and R. Kim, Principles of Enhanced Heat Transfer, 2nd ed., Boca Raton: CRC Press, 2005.
  • S. J. Kim, “Methods for Thermal Optimization of Microchannel Heat Sinks,” Heat Transf. Eng, vol. 25, no. 1, pp. 37–49, Jan. 2004. DOI: 10.1080/01457630490248359.
  • D. Liu and S. V. Garimella, “Analysis and optimization of the thermal performance of microchannel heat sinks,” Int. J. Num Meth. HFF, vol. 15, no. 1, pp. 7–26, Jan. 2005. DOI: 10.1108/09615530510571921.
  • S. V. Garimella and V. Singhal, “Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks,” Heat Transf. Eng., vol. 25, no. 1, pp. 15–25, Jan. 2004. DOI: 10.1080/01457630490248241.
  • P. Canhoto and A. Heitor Reis, “Optimization of forced convection heat sinks with pumping power requirements,” Int. J. Heat Mass Transf, vol. 54, no. 7-8, pp. 1441–1447, Mar. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.11.050.
  • G. Xie, H. Shen and C.-C. Wang, “Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations,” Int. J. Heat Mass Transf, vol. 90, pp. 948–958, Nov. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.034.
  • G. Xia, L. Chai, M. Zhou and H. Wang, “Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities,” Int. J. Therm. Sci, vol. 50, no. 3, pp. 411–419, Mar. 2011. DOI: 10.1016/j.ijthermalsci.2010.08.009.
  • G. Xia, L. Chai, H. Wang, M. Zhou and Z. Cui, “Optimum thermal design of microchannel heat sink with triangular reentrant cavities,” Appl. Therm. Eng, vol. 31, no. 6–7, pp. 1208–1219, May 2011. DOI: 10.1016/j.applthermaleng.2010.12.022.
  • A. Bejan, Entropy Generation Minimization, 1st ed. Boca Raton: CRC Press, 1995.
  • M. Li and A. C. K. Lai, “Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method,” Energy Convers. Manag, vol. 65, pp. 133–139, Jan. 2013. DOI: 10.1016/j.enconman.2012.07.013.
  • Y. L. Zhai, G. D. Xia, X. F. Liu and Y. F. Li, “Exergy analysis and performance evaluation of flow and heat transfer in different micro heat sinks with complex structure,” Int. J. Heat Mass Transf, vol. 84, pp. 293–303, May 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.039.
  • Y. F. Li, G. D. Xia, D. D. Ma, Y. T. Jia and J. Wang, “Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs,” Int. J. Heat Mass Transf, vol. 98, pp. 17–28, Jul. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.022.
  • L. Kuddusi, “First and second law analysis of fully developed gaseous slip flow in trapezoidal silicon microchannels considering viscous dissipation effect,” Int. J. Heat Mass Transf, vol. 54, no. 1–3, pp. 52–64, Jan. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.064.
  • A. Datta, V. Sharma, D. Sanyal and P. Das, “A conjugate heat transfer analysis of performance for rectangular microchannel with trapezoidal cavities and ribs,” Int. J. Therm. Sci, vol. 138, pp. 425–446, Apr. 2019. DOI: 10.1016/j.ijthermalsci.2018.12.020.
  • P. Dey and S. K. Saha, “Entropy Generation Analysis in a Bioinspired Microchannel,” Presented at the 4th World Congr. on Mechanical, Chemical, and Material Engineering (MCM' 18), Madrid, Spain, Aug. 2018. vol. 155, no. HTFF: 1-9, DOI: 10.11159/htff18.155.
  • J. A. Esfahani, M. Akbarzadeh, S. Rashidi, M. A. Rosen and R. Ellahi, “Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat,” Int. J. Heat Mass Transf, vol. 109, pp. 1162–1171, Jun. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.006.
  • D. Yuan, W. Zhou, T. Fu and C. Liu, “Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels,” Int. J. Therm. Sci, vol. 152, pp. 106320, Feb. 2020. DOI: 10.1016/j.ijthermalsci.2020.106320.
  • A. A. A. A. Al-Rashed, et al., “Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink,” Int. Commun. Heat Mass Transf, vol. 104, pp. 118–126, May 2019. DOI: 10.1016/j.icheatmasstransfer.2019.03.007.
  • F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. S. Lavine, Incropera's Principles of Heat and Mass Transfer, Hoboken, NJ: John Wiley, 2017.
  • G. L. Morini and Y. Yang, “Guidelines for the determination of single-phase forced convection coefficients in microchannels,” J. Heat Transfer, vol. 135, 10, Oct. 2013. DOI: 10.1115/1.4024499.
  • L. Chai, G. Xia, L. Wang, M. Zhou and Z. Cui, “Heat transfer enhancement in microchannel heat sinks with periodic expansion-constriction cross-sections,” Int. J. Heat Mass Transf, vol. 62, no. 1, pp. 741–751, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.045.
  • V. S. Duryodhan, S. G. Singh and A. Agrawal, “Heat rate distribution in converging and diverging microchannel in presence of conjugate effect,” Int. J. Heat Mass Transf, vol. 104, pp. 1022–1033, Jan. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.014.
  • P. S. Lee and S. V. Garimella, “Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios,” Int. J. Heat Mass Transf, vol. 49, no. 17–18, pp. 3060–3067, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.02.011.
  • D. Toghraie, M. M. D. Abdollah, F. Pourfattah, O. A. Akbari and B. Ruhani, “Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid,” J Therm Anal Calorim, vol. 131, no. 2, pp. 1757–1766, 2018. DOI: 10.1007/s10973-017-6624-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.