268
Views
1
CrossRef citations to date
0
Altmetric
Articles

Comprehensive Analysis of Hybrid Heat Sinks with Phase Change Materials for Both Charging and Discharging Cycles

&

References

  • R. Kandasamy, X. Wang and A. S. Mujumdar, “Application of phase change materials in thermal management of electronics,” Appl. Thermal Eng., vol. 27, no. 17–18, pp. 2822–2832, Dec. 2007. DOI: 10.1016/j.applthermaleng.2006.12.013.
  • Z. Luo, H. Cho, X. Luo and K. Cho, “System thermal analysis for mobile phone,” Appl. Thermal Eng., vol. 28, no. 14–15, pp. 1889–1895, Oct. 2008. DOI: 10.1016/j.applthermaleng.2007.11.025.
  • P. Srivatsa, R. Baby and C. Balaji, “Geometric optimization of a PCM-based heat sink—A coupled ANN and GA approach,” Heat Transf. Eng., vol. 37, no. 10, pp. 875–888, Feb. 2016. DOI: 10.1080/01457632.2015.1089749.
  • S. S. Lucas and J. L. B. de Aguiar, “Evaluation of latent heat storage in mortars containing microencapsulated paraffin waxes—A selection of optimal composition and binders,” Heat Mass Transf., vol. 55, no. 9, pp. 2429–2435, Feb. 2019. DOI: 10.1007/s00231-019-02594-1.
  • F. B. Errebai, S. Chikh and L. Derradji, “Experimental and numerical investigation for improving the thermal performance of a microencapsulated phase change material plasterboard,” Energy Convers. Manage., vol. 174, no. 15, pp. 309–321, Oct. 2018. DOI: 10.1016/j.enconman.2018.08.052.
  • Y. Zhang and Q. Wang, “Impact of phase change material’s thermal properties on the thermal performance of phase change material hollow block wall,” Heat Transf. Eng., vol. 40, no. 19, pp. 1619–1632, 2019. DOI: 10.1080/01457632.2018.1480879.
  • S. Loem, T. Deethayat, A. Asanakham and T. Kiatsiriroat, “Study on phase change material thermal characteristics during air charging/discharging for energy saving of air-conditioner,” Heat Mass Transf., vol. 56, no. 7, pp. 2121–2133, Feb. 2020. DOI: 10.1007/s00231-020-02839-4.
  • M. H. Shojaeefard, G. R. Molaeimanesh, Y. S. Ranjbaran, “Improving the performance of a passive battery thermal management system based on PCM using lateral fins,” Heat Mass Transf., vol. 55, no. 6, pp. 1753–1767, Jan. 2019. DOI: 10.1007/s00231-018-02555-0.
  • M. Y. Ramandi, I. Dincer and G. F. Naterer, “Heat transfer and thermal management of electric vehicle batteries with phase change materials,” Heat Mass Transf., vol. 47, no. 7, pp. 777–788, Feb. 2011. DOI: 10.1007/s00231-011-0766-z.
  • D. Guerraiche, C. Bougriou, K. Guerraiche, L. Valenzuela and Z. Driss, “Experimental and numerical study of a solar collector using phase change material as heat storage,” J. Energy Storage, vol. 27, pp. 101133, Feb. 2020. DOI: 10.1016/j.est.2019.101133.
  • R. Rabie, M. Emam, S. Ookawara and M. Ahmed, “Thermal management of concentrator photovoltaic systems using new configurations of phase change material heat sinks,” Solar Energy, vol. 183, pp. 632–652, May 2019. DOI: 10.1016/j.solener.2019.03.061.
  • V. Palomba, et al., “Latent thermal storage for solar cooling applications: materials characterization and numerical optimization of finned storage configurations,” Heat Transf. Eng., vol. 40, no. 12, pp. 1033–1048, 2019. DOI: 10.1080/01457632.2018.1451236.
  • S. M. Sadrameli, F. Motaharinejad, M. Mohammadpour, F. Dorkoosh, “An experimental investigation to the thermal conductivity enhancement of paraffin wax as a phase change material using diamond nanoparticles as a promoting factor,” Heat Mass Transf., vol. 55, no. 6, pp. 1801–1808, Jan. 2019. DOI: 10.1007/s00231-018-02536-3.
  • W. G. Alshaer, S. A. Nada, M. A. Rady, E. P. D. Barrio and A. Sommier, “Thermal management of electronic devices using carbon foam and PCM/nano-composite,” Int. J. Thermal Sci., vol. 89, pp. 79–86, Mar. 2015. DOI: 10.1016/j.ijthermalsci.2014.10.012.
  • W. G. Alshaer, S. A. Nada, M. A. Rady, C. L. Bot and E. P. D. Barrio, “Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment,” Energy Convers. Manage., vol. 89, pp. 873–884, Jan. 2015. DOI: 10.1016/j.enconman.2014.10.045.
  • H. Faraji, M. Faraji and M. E. Alami, “Numerical study of the transient melting of nano-enhanced phase change material,” Heat Transf. Eng., vol. 42, no. 2, pp. 120–139, 2021. DOI: 10.1080/01457632.2019.1692496.
  • G. K.Marri and C. Balaji, “Experimental and numerical investigations on a phase change material based heat sink with symbiotically joined heat pipe,” Heat Transf. Eng., vol. 42, no. 1, pp. 23–40, 2021. DOI: 10.1080/01457632.2019.1685241.
  • S. Mahmoud, A. Tang, C. Toh, R. Al-Dadah and S. L. Soo, “Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks,” Appl. Energy, vol. 112, pp. 1349–1356, Dec. 2013. DOI: 10.1016/j.apenergy.2013.04.059.
  • R. Baby and C. Balaji, “Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling,” Int. J. Heat Mass Transf., vol. 55, no. 5-6, pp. 1642–1649, Feb. 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.11.020.
  • S. K. Saha, K. Srinivasan and P. Dutta, “Studies on optimum distribution of fins in heat sinks filled with phase change materials,” J. Heat Transf., vol. 130, no. 3, pp. 4, Mar. 2008. DOI: 10.1115/1.2804948.
  • H. M. Ali, et al., “Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs,” Int. J. Heat Mass Transf., vol. 123, pp. 272–284, Aug. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.044.
  • S. Gharbi, S. Harmand and S. B. Jabrallah, “Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components,” Appl. Thermal Eng., vol. 87, pp. 454–462, Aug. 2015. DOI: 10.1016/j.applthermaleng.2015.05.024.
  • M. Sheikholeslami, S. Lohrasbi and D. D. Ganji, “Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method,” Appl. Thermal Eng., vol. 107, pp. 154–166, Aug. 2016. DOI: 10.1016/j.applthermaleng.2016.06.158.
  • S. Lohrasbi, M. Gorji-Bandpy and D. D. Ganji, “Thermal penetration depth enhancement in latent heat thermal energy storage system in the presence of heat pipe based on both charging and discharging processes,” Energy Convers. Manage., vol. 148, pp. 646–667, Sep. 2017. DOI: 10.1016/j.enconman.2017.06.034.
  • G. Lorenzini and L. A. O. Rocha, “Constructal design of Y-shaped assembly of fins,” Int. J. Heat Mass Transf., vol. 49, no. 23–24, pp. 4552–4557, Nov. 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.019.
  • S. Zhang, L. Pu, L. Xu, R. Liu and Y. Li, “Melting performance analysis of phase change materials in different finned thermal energy storage,” Appl. Thermal Eng., vol. 176, pp. 115425, Jul. 2020. DOI: 10.1016/j.applthermaleng.2020.115425.
  • C. Ji, et al., “Non-uniform heat transfer suppression to enhance PCM melting by angled fins,” Appl. Thermal Eng., vol. 129, pp. 269–279, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.10.030.
  • C. Ji, Z. Qin, S. Dubey, F. H. Choo and F. Duan, “Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection,” Int. J. Heat Mass Transf., vol. 127, pp. 255–265, Dec. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.118.
  • Z. Hu, A. Li, R. Gao and H. Yin, “Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs,” J. Therm. Anal. Calorim., vol. 120, no. 2, pp. 1407–1416, Jan. 2015. DOI: 10.1007/s10973-014-4370-6.
  • B. Buonomo, D. Ercole, O. Manca and S. Nardini, “Numerical analysis on a latent thermal energy storage system with phase change materials and aluminum foam,” Heat Transfer Eng., vol. 41, no. 12, pp. 1075–1084, 2020. DOI: 10.1080/01457632.2019.1600875.
  • H. Zheng, C. Wang, Q. Liua, Z. Tian and X. Fan, “Thermal performance of copper foam/paraffin composite phase change material,” Energy Convers. Manage., vol. 157, pp. 372–381, Feb. 2018. DOI: 10.1016/j.enconman.2017.12.023.
  • Z. Q. Zhu, Y. K. Huang, N. Hu, Y. Zeng and L. W. Fan, “Transient performance of a PCM-based heat sink with a partially filled metal foam: Effects of the filling height ratio,” Appl. Thermal Eng., vol. 128, pp. 966–972, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.09.047.
  • Z. G. Wu, W. C. Sheng, W. Q. Tao and Z. Li, “A novel experimental-numerical method for studying the thermal behaviors of phase change material in a porous cavity,” Solar Energy, vol. 169, pp. 325–334, Jul. 2018. DOI: 10.1016/j.solener.2018.05.014.
  • Z. Chen, D. Gao and J. Shi, “Experimental and numerical study on melting of phase change materials in metal foams at pore scale,” Int. J. Heat Mass Transf., vol. 72, pp. 646–655, May 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.003.
  • X. Hu, F. Zhu and X. Gong, “Experimental and numerical study on the thermal behavior of phase change material infiltrated in low porosity metal foam,” J. Energy Storage, vol. 26, pp. 101005, Dec. 2019. DOI: 10.1016/j.est.2019.101005.
  • T. Rehman, H. M. Ali, M. Mansoor Janjua, U. Sajjad and W. M. Yan, “A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams,” Int. J. Heat Mass Transf., vol. 135, pp. 649–673, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.001.
  • X. Xiao, P. Zhang and M. Li, “Preparation and thermal characterization of paraffin/metal foam composite phase change material,” Appl. Energy, vol. 112, pp. 1357–1366, Dec. 2013. DOI: 10.1016/j.apenergy.2013.04.050.
  • K. C. Nayak, S. K. Saha, K. Srinivasan and P. Dutta, “A numerical model for heat sinks with phase change materials and thermal conductivity enhancers,” Int. J. Heat Mass Transfer, vol. 49, no. 11-12, pp. 1833–1844, Jun. 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.10.039.
  • Y. Tian and C. Y. Zhao, “A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals,” Energy, vol. 36, no. 9, pp. 5539–5546, Sep. 2011. DOI: 10.1016/j.energy.2011.07.019.
  • P. V. S. S. Srivatsa, R. Baby and C. Balaji, “Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins,” Num. Heat Transf., vol. 66, no. 10, pp. 1131–1153, 2014. DOI: 10.1080/10407782.2014.894371.
  • X. Hu, H. Wan and S. S. Patnaik, “Numerical modeling of heat transfer in open-cell micro-foam with phase change material,” Int. J. Heat Mass Transf., vol. 88, pp. 617–626, Sep. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.044.
  • ANSYS fluent software package: User’s manual, version 12. Canonsburg, PA, USA. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm.
  • V. Calmidi and R. Mahajan, “Forced convection in high porosity metal foams,” J. Heat Transf., vol. 122, no. 3, pp. 557–565, Aug. 2000. DOI: 10.1115/1.1287793.
  • K. Boomsma and D. Poulikakos, “On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam,” Int. J. Heat Mass Transf., vol. 44, no. 4, pp. 827–836, Feb. 2001. DOI: 10.1016/S0017-9310(00)00123-X.
  • O. Mesalhy, K. Lafdi, A. Elgafy and K. Bowman, “Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix,” Energy Conserv. Manage., vol. 46, no. 6, pp. 847–867, Apr. 2005. DOI: 10.1016/j.enconman.2004.06.010.
  • M. Parsazadeh and X. Duan, “Numerical and experimental investigation of phase change heat transfer in the presence of Rayleigh–Bernard convection,” J. Heat Transf., vol. 142, no. 6, pp. 062401, 2020. DOI: 10.1115/1.4046537.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.