219
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of Phase Change Materials on the Performance of Natural Convection Indirect Type Solar Dryer during Drying Ivy Gourd

&

References

  • V. P. Chandramohan, “Numerical prediction and analysis of surface transfer coefficients on moist object during heat and mass transfer application,” Heat Transfer Eng., vol. 37, no. 1, pp. 53–63, Jan. 2016. DOI: 10.1080/01457632.2015.1042341.
  • S. Vijayan, T. V. Arjunan and A. Kumar, “Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer,” Innov. Food Sci. Emerg. Technol., vol. 36, pp. 59–67, Aug. 2016. DOI: 10.1016/j.ifset.2016.05.014.
  • I. Ahmed, M. S. Lakhani, M. Gillett, A. John and H. Raza, “Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (Karela) fruit extract in streptozotocin-induced diabetic rats,” Diabetes Res. Clin. Pract., vol. 51, no. 3, pp. 155–161, 2001. Mar (00)00224-2. DOI: 10.1016/S0168-8227.
  • A. B. Lingayat, V. P. Chandramohan, V. R. K. Raju and V. Meda, “A review on indirect type solar dryers for agricultural crops—Dryer setup, its performance, energy storage and important highlights,” Appl. Energy, vol. 258, article no. 114005 (22 pages), Jan. 2020. DOI: 10.1016/j.apenergy.2019.114005.
  • K. N. Shukla, “Thermal energy storage for solar power generation: State of the art,” Heat Transfer Eng., vol. 3, no. 2, pp. 62–72, 1981. DOI: 10.1080/01457638108939581.
  • A. K. Bhardwaj, R. Kumar, S. Kumar, B. Goel and R. Chauhan, “Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM,” Sustain. Energy Technol. Assess., vol. 45, article no. 101119 (16 pages), June 2021. DOI: 10.1016/j.seta.2021.101119.
  • S. Esakkimuthu, et al., “Experimental investigation on phase change material based thermal storage system for solar air heating applications,” Solar Energy, vol. 88, pp. 144–153, Feb. 2013. DOI: 10.1016/j.solener.2012.11.006.
  • A. K. Singh, N. Agarwal and A. Saxena, “Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater,” J. Energy Storage, vol. 39, article no. 102627 (9 pages), May 2021. DOI: 10.1016/j.est.2021.102627.
  • S. Tiwari, “ANN and mathematical modelling for moisture evaporation with thermal modelling of bitter gourd flakes drying in SPVT solar dryer,” Heat Mass Transfer, vol. 56, no. 10, pp. 2831–2845, 2020. DOI: 10.1007/s00231-020-02886-x.
  • V. Reddy Mugi and V. P. Chandramohan, “Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection,” Thermal Sci. Eng. Prog., vol. 24, article no. 100950 (13 pages), May 2021. DOI: 10.1016/j.tsep.2021.100950.
  • R. O. Lamidi, L. Jiang, P. B. Pathare, Y. D. Wang and A. P. Roskilly, “Recent advances in sustainable drying of agricultural produce: A review,” APPl. Energy, vol. 233–234, pp. 367–385, July 2019. DOI: 10.1016/j.apenergy.2018.10.044.
  • Z. Tagnamas, et al., “Drying kinetics and energy ana-lysis of carob seeds (Ceratonia siliqua L.) convective solar drying,” J. Thermal Anal. Calorim., vol. 147, pp. 2281–2291, Feb. 2021. DOI: 10.1007/s10973-021-10632-6.
  • L. F. Hidalgo, M. N. Candido, K. Nishioka, J. T. Freire and G. N. A. Vieira, “Natural and forced air convection operation in a direct solar dryer assisted by photovoltaic module for drying of green onion,” Solar Energy, vol. 220, pp. 24–34, Mar. 2021. DOI: 10.1016/j.solener.2021.02.061.
  • S. Şevik, “Design, experimental investigation and analysis of a solar drying system,” Energy Convers. Manage., vol. 68, pp. 227–234, Apr. 2013. DOI: 10.1016/j.enconman.2013.01.013.
  • G. Mittelman, O. Mouchtar and A. Dayan, “Large-scale solar thermal desalination plants: A review,” Heat Transfer Eng., vol. 28, no. 11, pp. 924–930, 2007. DOI: 10.1080/01457630701421711.
  • A. Kumar and M. H. Kim, “Solar air-heating system with packed-bed energy-storage systems,” Renew. Sustain. Energy Rev., vol. 72, pp. 215–227, Oct. 2017. DOI: 10.1016/j.rser.2017.01.050.
  • S. K. Saha and P. Dutta, “Performance analysis of heat sinks with phase-change materials subjected to transient and cyclic heating,” Heat Transfer Eng., vol. 36, no. 16, pp. 1349–1359, April 2015. DOI: 10.1080/01457632.2015.1003714.
  • S. D. Sharma and K. Sagara, “Latent heat storage materials and systems: A review,” Int. J. Green Energy, vol. 2, no. 1, pp. 1–56, 2005. DOI: 10.1081/GE-200051299.
  • A. J. Parry, P. C. Eames and F. B. Agyenim, “Modeling of thermal energy storage shell-and-tube heat exchanger,” Heat Transfer Eng., vol. 35, no. 1, pp. 1–14, 2014. DOI: 10.1080/01457632.2013.810057.
  • X. Xiao and P. Zhang, “Experimental investigation on heat storage/retrieval characteristics of a latent heat storage system,” Heat Transfer Eng., vol. 35, no. 11–12, pp. 1084–1097, 2014. DOI: 10.1080/01457632.2013.863127.
  • L. M. Bal, S. Satya and S. N. Naik, “Solar dryer with thermal energy storage systems for drying agricultural food products: A review,” Renew. Sustain. Energy Rev., vol. 14, no. 8, pp. 2298–2314, 2010. DOI: 10.1016/j.rser.2010.04.014.
  • Z. Alimohammadi, H. Samimi Akhijahani and P. Salami, “Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods,” Solar Energy, vol. 201, pp. 157–177, Feb. 2020. DOI: 10.1016/j.solener.2020.02.079.
  • M. Bahari, B. Najafi and A. Babapoor, “Evaluation of α-AL2O3-PW nanocomposites for thermal energy storage in the agro-products solar dryer,” J. Energy Storage, vol. 28, article no. 101181 (9 pages), Jan. 2020. DOI: 10.1016/j.est.2019.101181.
  • A. Erek and I. Dincer, “A new approach to energy and exergy analyses of latent heat storage unit,” Heat Transfer Eng., vol. 30, no. 6, pp. 506–515, 2009. DOI: 10.1080/01457630802529271.
  • M. C. Ndukwu, D. Onyenwigwe, F. I. Abam, A. B. Eke and C. Dirioha, “Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage,” Renew. Energy, vol. 154, pp. 553–568, July 2020. DOI: 10.1016/j.renene.2020.03.016.
  • W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Eng., vol. 29, no. 5, pp. 432–460, 2008. DOI: 10.1080/01457630701850851.
  • Z. Tagnamas, et al., “Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method,” Renew. Energy, vol. 146, pp. 16–24, Feb2020. DOI: 10.1016/j.renene.2019.06.107.
  • P. J. Etim, A. Ben Eke and K. J. Simonyan, “Design and development of an active indirect solar dryer for cooking banana,” Sci. Afr., vol. 8, article no. e00463 (10 pages), June 2020. DOI: 10.1016/j.sciaf.2020.e00463.
  • A. Lingayat, V. P. Chandramohan and V. R. K. Raju, “Energy and exergy analysis on drying of banana using indirect type natural convection solar dryer,” Heat Transfer Eng., vol. 41, no. 6–7, pp. 551–561, 2020. DOI: 10.1080/01457632.2018.1546804.
  • A. Lingayat, V. P. Chandramohan, V. R. K. Raju and A. Kumar, “Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon: Indirect type solar dryer for drying apple and watermelon,” Thermal Sci. Eng. Prog., vol. 16, article no. 100477 (16 pages), June 2020. DOI: 10.1016/j.tsep.2020.100477.
  • A. Djebli, S. Hanini, O. Badaoui, B. Haddad and A. Benhamou, “Modeling and comparative analysis of solar drying behavior of potatoes,” Renew. Energy, vol. 145, pp. 1494–1506, Jan2020. DOI: 10.1016/j.renene.2019.07.083.
  • R. Ouaabou, et al., “Impact of solar drying process on drying kinetics, and on bioactive profile of Moroccan sweet cherry,” Renew. Energy, vol. 151, pp. 908–918, May 2020. DOI: 10.1016/j.renene.2019.11.078.
  • J. P. Ekka, K. Bala, P. Muthukumar and D. K. Kanaujiya, “Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates,” Renew. Energy, vol. 152, pp. 55–66, June 2020. DOI: 10.1016/j.renene.2020.01.035.
  • S. Subramani, S. S. Dana, V. T. Natesan and L. L. G. Mary, “Energy and exergy analysis of greenhouse drying of ivy gourd and Turkey berry,” Therm Sci, vol. 24, no. 1 Part B, pp. 645–656, 2020. DOI: 10.2298/TSCI190602459S.
  • M. Goud, M. V. V. Reddy, V. P. Chandramohan and S. Suresh, “A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum annum and Abelmoschus esculentus with dryer performance,” Solar Energy, vol. 194, pp. 871–885, Dec. 2019. DOI: 10.1016/j.solener.2019.11.031.
  • V. Sunil and N. Sharma, “Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves,” J. Thermal Anal. Calorim., vol. 118, no. 1, pp. 523–531, 2014. DOI: 10.1007/s10973-014-3949-2.
  • M. Abuşka and M. B. Akgül, “Experimental study on thermal performance of a novel solar air collector having conical springs on absorber plate,” Arab. J. Sci. Eng., vol. 41, no. 11, pp. 4509–4516, 2016. DOI: 10.1007/s13369-016-2177-4.
  • M. A. Karim and M. N. A. Hawlader, “Mathematical modeling and experimental investigation of tropical fruits drying,” Int. J. Heat Mass Transfer, vol. 48, no. 23–24, pp. 4914–4925, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.04.035.
  • V. P. Chandra Mohan and P. Talukdar, “Three-dimensional numerical modeling of simultaneous heat and moisture transfer in a moist object subjected to convective drying,” Int. J. Heat Mass Transfer, vol. 53, no. 21-22, pp. 4638–4650, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.029.
  • P. Sain, V. Songara, R. Karir and N. Balan, “Natural convection type solar dryer with latent heat storage,” Proceedings - 2013 International Conference on Renewable Energy and Sustainable Energy, ICRESE 2013, Coimbatore, India, 2014. pp. 9–14, Dec. DOI: 10.1109/ICRESE.2013.6927808.
  • A. K. Babu, G. Kumaresan, V. A. A. Raj and R. Velraj, “Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models,” Renew. Sustain. Energy Rev., vol. 90, pp. 536–556, Apr. 2018. DOI: 10.1016/j.rser.2018.04.002.
  • S. Vijayan, T. V. Arjunan and A. Kumar, “Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices,” Renew. Energy, vol. 146, pp. 2210–2223, Feb2020. DOI: 10.1016/j.renene.2019.08.066.
  • A. Reyes, A. Mahn and F. Vásquez, “Mushrooms dehydration in a hybrid-solar dryer, using a phase change material,” Energy Convers. Manage., vol. 83, pp. 241–248, July 2014. DOI: 10.1016/j.enconman.2014.03.077.
  • C. E. L, “Fundamentals of mass transfer,” Part III- mass transfer, pp. 237–273, 2012. [Online]. Available: http://calliope.dem.uniud.it/CLASS/IMP-CHIM/C8-Cussler.pdf. Accessed June 28, 2021.
  • N. Wang and J. G. Brennan, “A mathematical model of simultaneous heat and moisture transfer during drying of potato,” J. Food Eng., vol. 24, no. 1, pp. 47–60, 1995. DOI: 10.1016/0260-8774(94)P1607-Y.
  • N. Vigneshkumar, et al., “Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM),” Mater. Today: Proc., vol. 47, pp. 5233–5238, June 2021. DOI: 10.1016/j.matpr.2021.05.562.
  • S. Abubakar, et al., “Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage,” Renew. Energy, vol. 128, pp. 285–298, Dec. 2018. DOI: 10.1016/j.renene.2018.05.049.
  • D. K. Rabha and P. Muthukumar, “Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system,” Solar Energy, vol. 149, pp. 214–226, June 2017. DOI: 10.1016/j.solener.2017.04.012.
  • K. Sacilik, “Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.),” J. Food Eng., vol. 79, no. 1, pp. 23–30, 2007. DOI: 10.1016/j.jfoodeng.2006.01.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.