200
Views
11
CrossRef citations to date
0
Altmetric
Articles

Experimental Investigation on Heat Transfer Enhancement of Artificially Roughened Solar Air Heater

&

References

  • J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes. New York, USA: Wiley, 1980.
  • A. S. Yadav and A. Gattani, “Solar thermal air heater for sustainable development,” Materials Today: Proceedings, 2021 (In press). DOI: 10.1016/j.matpr.2021.11.630.
  • A. S. Yadav and A. Gattani, “Revisiting the influence of artificial roughness shapes on heat transfer enhancement,” Mater. Today: Proc., 2022 (In press). DOI: 10.1016/j.matpr.2021.12.254.
  • A. S. Yadav, O. P. Shukla and R. S. Bhadoria, “Recent advances in modeling and simulation techniques used in analysis of solar air heater having ribs,” Materials Today: Proceedings, 2022 (In press). DOI: 10.1016/j.matpr.2021.12.242.
  • B. Bhushan and R. Singh, “A review on methodology of artificial roughness used in duct of solar air heaters,” Energy, vol. 35, no. 1, pp. 202–212, 2010. DOI: 10.1016/j.energy.2009.09.010.
  • J. P. Joule, “On the surface-condensation of steam,” Philosoph. Trans. Roy. soc. London, vol. 151, pp. 133–160, Dec 1861. DOI: 10.1098/rstl.1861.0009.
  • L. F. Moody, “Friction factors for pipe flow,” Trans. Am. soc. Mech. Eng., vol. 66, pp. 671–682, Nov 1944.
  • W. Nunner, “Heat transfer and pressure drop in rough pipes,” VDI-Forschungsheft, vol. 22, no. 22, pp. 5–39, 1956.
  • D. F. Dipprey and R. H. Sabersky, “Heat and momentum transfer in smooth and rough tubes at various prandtl numbers,” Int. J. Heat Mass Trans., vol. 6, no. 5, pp. 329–353, 1963. DOI: 10.1016/0017-9310(63)90097-8.
  • R. L. Webb, E. R. G. Eckert and R. J. Goldstein, “Generalized heat transfer and friction correlations for tubes with repeated-rib roughness,” Int. J. Heat Mass Trans., vol. 15, no. 1, pp. 180–184, 1972. DOI: 10.1016/0017-9310(72)90179-2.
  • K. Prasad and S. C. Mullick, “Heat transfer characteristics of a solar air heater used for drying purposes,” Appl. Energy, vol. 13, no. 2, pp. 83–93, 1983. DOI: 10.1016/0306-2619(83)90001-6.
  • B. N. Prasad and J. S. Saini, “Effect of artificial roughness on heat transfer and friction factor in a solar air heater,” Solar Energy, vol. 41, no. 6, pp. 555–560, 1988. DOI: 10.1016/0038-092X(88)90058-8.
  • D. Gupta, S. C. Solanki and J. S. Saini, “Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates,” Solar Energy, vol. 51, no. 1, pp. 31–37, 1993. DOI: 10.1016/0038-092X(93)90039-Q.
  • R. Karwa, S. C. Solanki and J. S. Saini, “Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts,” Int. J. Heat Mass Trans., vol. 42, no. 9, pp. 1597–1615, 1999. DOI: 10.1016/S0017-9310(98)00252-X.
  • J. L. Bhagoria, J. S. Saini and S. C. Solanki, “Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate,” Renewable Energy, vol. 25, no. 3, pp. 341–369, 2002. DOI: 10.1016/S0960-1481(01)00057-X.
  • Y. Rao and P. Zhang, “Experimental study of heat transfer and pressure loss in channels with miniature V rib-dimple hybrid structure,” Heat Trans. Eng., vol. 41, no. 15–16, pp. 1431–1441, 2019. DOI: 10.1080/01457632.2019.1628502.
  • A. Qayoum and P. Panigrahi, “Experimental investigation of heat transfer enhancement in a two-pass square duct by permeable ribs,” Heat Trans. Eng., vol. 40, no. 8, pp. 640–651, 2018. DOI: 10.1080/01457632.2018.1436649.
  • L. Abhay, V. P. Chandramohan and V. R. K. Raju, “Numerical analysis on solar air collector provided with artificial square shaped roughness for indirect type solar dryer,” J. Clean. Prod., vol. 190, pp. 353–367, July 2018. DOI: 10.1016/j.jclepro.2018.04.130.
  • A. S. Yadav, “CFD investigation of effect of relative roughness height on Nusselt number and friction factor in an artificially roughened solar air heater,” J. Chin. Inst. Eng., vol. 38, no. 4, pp. 494–502, 2015. DOI: 10.1080/02533839.2014.998165.
  • R. Prasad, A. S. Yadav, N. K. Singh and D. Johari, “Heat transfer and friction characteristics of an artificially roughened solar air heater,” in Advances in Fluid and Thermal Engineering, Lecture Notes in Mechanical Engineering, P. Saha, P. M. V. Subbarao, and B. S. Sikarwar Eds. Singapore: Springer, 2019, pp. 613–626. DOI: 10.1007/978-981-13-6416-7_57.
  • A. Afzal, H. Chung, K. Muralidhar and H. H. Cho, “Neural-network-assisted optimization of rectangular channels with intersecting ribs for enhanced thermal performance,” Heat Trans. Eng., vol. 41, no. 18, pp. 1609–1625, 2019. DOI: 10.1080/01457632.2019.1661693.
  • A. S. Yadav, V. Shrivastava, A. Sharma and M. K. Dwivedi, “Numerical simulation and CFD-based correlations for artificially roughened solar air heater,” Mater. Today: Proc, vol. 47, no. 11, pp. 2685–2693, 2021. DOI: 10.1016/j.matpr.2021.02.759.
  • N. Sharma, A. Tariq and M. Mishra, “Experimental Investigation of Heat Transfer Enhancement in Rectangular Duct with Pentagonal Ribs,” Heat Transf. Eng., vol. 40, no. 1–2, pp. 147–165, 2018. DOI: 10.1080/01457632.2017.1421135.
  • A. S. Yadav and S. K. Sharma, “Numerical Simulation of Ribbed Solar Air Heater,” in Advances in Fluid and Thermal Engineering, Lecture Notes in Mechanical Engineering, B. S. Sikarwar, B. Sundén, and Q. Wang Eds. Singapore: Springer, 2021, pp. 549–558. DOI: 10.1007/978-981-16-0159-0_49.
  • S. Chokphoemphun, P. Promthaisong, N. Pipatpaiboon and N. Onsalung, “Thermal augmentation in a force convective cabinet dryer using zigzag ribs fitted on air heater section,” Heat Transfer Eng., vol. 42, no. 15, pp. 1249–1267, 2020. DOI: 10.1080/01457632.2020.1785695.
  • A. S. Yadav, et al., “Enhanced solar thermal air heater: A numerical investigation,” Mater. Today: Proc., vol. 47, no. 11, pp. 2777–2783, 2021. 2021. DOI: 10.1016/j.matpr.2021.03.385.
  • A. S. Yadav, M. K. Dwivedi, A. Sharma and V. K. Chouksey, “CFD based heat transfer correlation for ribbed solar air heater,” Materials Today: Proceedings, 2022 (in press). DOI: 10.1016/j.matpr.2021.12.382.
  • G. L. Lehmann and R. A. Wirtz, “Effect of variations in streamwise spacing and length on convection from surface-mounted rectangular components,” Heat Transfer Engineering, vol. 9, no. 3, pp. 66–75, 1988. DOI: 10.1080/01457638808939672.
  • A. S. Yadav and M. K. Thapak, “Artificially roughened solar air heater: A comparative study,” Int. J. Green Energy, vol. 13, no. 2, pp. 143–172, 2016. DOI: 10.1080/15435075.2014.917419.
  • A. S. Yadav and M. K. Thapak, “Artificially roughened solar air heater: Experimental investigations,” Renew. Sustain. Energy Rev., vol. 36, pp. 370–411, August 2014. DOI: 10.1016/j.rser.2014.04.077.
  • A. S. Yadav and J. L. Bhagoria, “Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach,” Renew. Sustain. Energy Rev., vol. 23, pp. 60–79, July 2013. DOI: 10.1016/j.rser.2013.02.035.
  • ASHRAE Standard 93-97, Method of Testing to Determine the Thermal Performance of Solar Air Heater. New York, USA: ASHRAE, 1977.
  • S. J. Kline and A. McClintock, “Describing uncertainty in single sample experiments,” Mech. Eng., vol. 75, no. 1, pp. 3–8, 1953.
  • Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals & Applications, 6th ed. New York: McGraw-Hill Education, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.