191
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multiphase Computational Fluid Dynamics Simulation of Air and Fuel Reactors of Chemical Looping Combustion

, &

References

  • A. Ajilkumar, U. S. P. Shet and T. Sundararajan, “Numerical simulation of pressure effects on the gasification of Australian and Indian coals in a tubular gasifier,” Heat Trans. Eng., vol. 31, no. 6, pp. 495–508, 2010. DOI: 10.1080/01457630903409704.
  • H. Yang, et al., “Progress in carbon dioxide separation and capture: A review,” J. Environ. Sci., vol. 20, no. 1, pp. 14–27, 2008. DOI: 10.1016/S1001-0742(08)60002-9.
  • L. M. Romeo, I. Bolea and J. M. Escosa, “Integration of power plant and amine scrubbing to reduce CO2 capture costs,” Appl. Therm. Eng., vol. 28, no. 8–9, pp. 1039–1046, Jun. 2008. DOI: 10.1016/j.applthermaleng.2007.06.036.
  • M. Ishida and H. Jin, “A novel chemical-looping combustor without NOx formation,” Ind. Eng. Chem. Res., vol. 35, no. 7, pp. 2469–2472, 1996. DOI: 10.1021/ie950680s.
  • W. K. Lewis, E. R. Gilliland and G. T. Mcbride, “Gasification of carbon metal oxides in a fluidized powder bed,” Ind. Eng. Chem., vol. 41, no. 6, pp. 1213–256, 1949. DOI: 10.1021/ie50474a017.
  • R. Wadhwani and B. Mohanty, “A review on clean & efficient technology to generate electricity from coal,” In: “Proceedings of the 2013 IICBE CAMS,” Malaysia, pp. 4–8, 2013. DOI: 10.15242/IICBE.C1213006.
  • B. Moghtaderi, “Review of the recent chemical looping process developments for novel energy and fuel applications,” Energy Fuels, vol. 26, no. 1, pp. 15–40, 2012. DOI: 10.1021/ef201303d.
  • J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan and L. de Diego, “Progress in chemical looping combustion and reforming technologies,” Prog. Energy Combust. Sci., vol. 38, no. 2, pp. 215–282, 2012. DOI: 10.1016/j.pecs.2011.09.001.
  • A. Lyngfelt, “Chemical-looping combustion of solid fuels- status of development,” Appl. Energy, vol. 113, pp. 1869–1873, Jan. 2014. DOI: 10.1016/j.apenergy.2013.05.043.
  • A. Lyngfelt, “Oxygen carriers of chemical looping combustion – 4000h of experience,” Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles, vol. 66, no. 2, pp. 161–172, Apr. 2011. DOI: 10.2516/ogst/2010038.
  • A. Abad, T. Mattisson, A. Lyngfelt and M. Rydén, “Chemical looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier,” Fuel, vol. 85, no. 9, pp. 1174–1185, Jun. 2006. DOI: 10.1016/j.fuel.2005.11.014.
  • H. Gu, L. Shen, J. Xiao, S. Zhang and T. Song, “Chemical looping combustion of biomass/coal with natural iron ore as oxygen carrier in a continuous reactor,” Energy Fuels, vol. 25, no. 1, pp. 446–455, 2011. DOI: 10.1021/ef101318b.
  • S. K. Haider, L. Duan, K. Patchigolla and E. Anthony, “A hydrodynamic study of a fast-bed dual circulating fluidized bed for chemical looping combustion,” Energy Technol., vol. 4, no. 10, pp. 1254–1262, 2016. DOI: 10.1002/ente.201600059.
  • H. Gu, et al., “Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal,” Combust. Flame, vol. 159, no. 7. 2012. pp. 2480–2490, DOI: 10.1016/j.combustflame.2012.03.013.
  • T. Mendiara, et al., “Biomass combustion in a CLC system using an iron ore as an oxygen carrier,” Int. J. Green. Gas Control., vol. 19, pp. 322–330, Oct. 2013. DOI: 10.1016/j.ijggc.2013.09.012.
  • H. Gu, et al., “Potassium-modified iron ore as oxygen carrier for coal chemical looping combustion: Continuous test in 1 kW reactor,” Ind. Eng. Chem. Res., vol. 53, no. 33, pp. 13006–13015, 2014. DOI: 10.1021/ie501328h.
  • T. Mendiara, et al., “On the use of a highly reactive iron ore in chemical looping combustion of different coals,” Fuel, vol. 126, pp. 239–249, Jun. 2014. DOI: 10.1016/j.fuel.2014.02.061.
  • F. Alobaid, J. Busch, J. Streohle and B. Epple, “Investigations on torrefied biomass for the co-combustion in pulverized fired furnaces,” Powder Technology, vol. 92, no. 11, pp. 50–52, 2012. DOI: 10.1016/j.joei.2019.07.008.
  • L. I. Díez, C. Cortés and A. Campo, “Modelling of pulverized coal boilers: Review and validation of on-line simulation techniques,” Appl. Therm. Eng., vol. 25, no. 10, pp. 1516–1533, 2005. DOI: 10.1016/j.applthermaleng.2004.10.003.
  • A. Stroh, F. Alobaid, J. Busch, J. Strohle and B. Epple, “3-D numerical simulation for co-firing of torrefied biomass in a pulverized-fired 1 MWth combustion chamber,” Energy, vol. 85, pp. 105–116, Jun. 2015. DOI: 10.1016/j.energy.2015.03.078.
  • P. Verhees, A. V. Mahulkar, K. M. Van Geem and G. J. Heynderickx, “Thermal fouling of heat exchanger tubes due to heavy hydrocarbon droplets impingement,” Heat Trans. Eng., vol. 38, no. 7–8, pp. 712–720, 2016. DOI: 10.1080/01457632.2016.1206412.
  • M. Hatami, D. Ganji and M. Gorji-Bandpy, “Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition,” Appl. Therm. Eng., vol. 75, pp. 580–91, Jan. 2015. DOI: 10.1016/j.applthermaleng.2014.09.058.
  • B. B. Nayak and D. Chatterjee, “Assessment of mixture and Eulerian multiphase models in predicting the thermo-fluidic transport characteristics for fly ash-water slurry flow in straight horizontal pipeline,” Heat Trans. Eng., vol. 40, no. 8, pp. 1–14, 2018. DOI: 10.1080/01457632.2018.1436670.
  • W. Ge, et al., “Meso-scale oriented simulation towards virtual process engineering (VPE)—The EMMS paradigm,” Chem. Eng. Sci., vol. 66, no. 19, pp. 4426–4458, 2011. DOI: 10.1016/j.ces.2011.05.029.
  • X. Z. Chen, D. P. Shi, X. Gao and Z. H. Luo, “A fundamental CFD study of the gas–solid flow field in fluidized bed polymerization reactors,” Powder Technol., vol. 205, no. 1–3, pp. 276–288, 2011. DOI: 10.1016/j.powtec.2010.09.039.
  • N. Zhang, B. Lu, W. Wang and J. Li, “3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler,” Chem. Eng. J., vol. 162, no. 2, pp. 821–828, 2010. DOI: 10.1016/j.cej.2010.06.033.
  • A. Nikolopoulos, et al., “High-resolution 3-D full-loop simulation of a CFB carbonator cold model,” Chem. Eng. Sci., vol. 90, pp. 137–150, Mar. 2013. DOI: 10.1016/j.ces.2012.12.007.
  • Y. Tsuji, T. Kawaguchi and T. Tanaka, “Discrete particle simulation of two-dimensional fluidized bed,” Powder Technol., vol. 77, no. 1, pp. 79–87, 1993. DOI: 10.1016/0032-5910(93)85010-7.
  • B. H. Xu and A. B. Yu, “Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics,” Chem. Eng. Sci., vol. 52, no. 16, pp. 2785–2809, 1997. DOI: 10.1016/S0009-2509(97)00081-X.
  • M. Xu, F. Chen, X. Liu, W. Ge and J. Li, “Discrete particle simulation of gas–solid two-phase flows with multi-scale CPU-GPU hybrid computation,” Chem. Eng. J., vol. 207–208, no. 1, pp. 746–757, 2012. DOI: 10.1016/j.cej.2012.07.049.
  • S. Yang and S. Wang, “Eulerian-Lagrangian simulation of the full-loop gas-solid hydrodynamics in a pilot-scale circulating fluidized bed,” Powder Technol., vol. 369, no. 1, pp. 223–237, 2020. DOI: 10.1016/j.powtec.2020.05.043.
  • W. Shuai, et al., “Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds,” Fuel Process. Technol., vol. 92, no. 3, pp. 385–393, 2011. DOI: 10.1016/j.fuproc.2010.09.032.
  • J. M. Parker, “CFD model for the simulation of chemical looping combustion,” Powder Technol., vol. 265, pp. 47–53, Oct. 2014. DOI: 10.1016/j.powtec.2014.01.027.
  • C. Geng, W. Zhong, Y. Shao, D. Chen and B. Jin, “Computational study of solid circulation in chemical-looping combustion reactor model,” Powder Technol., vol. 276, pp. 144–155, May 2015. DOI: 10.1016/j.powtec.2015.01.077.
  • M. W. Seo, et al., “Solid circulation and loop-seal characteristics of a dual circulating fluidized bed: Experiments and CFD simulation,” Chemical Eng. J., vol. 168, no. 2, pp. 803–811, 2011. DOI: 10.1016/j.cej.2011.01.041.
  • W. K. H. Ariyaratne, E. V. P. J. Manjula, C. Ratnayake and M. C. Melaaen, “CFD Approaches for modeling gas-solids multiphase flows - a review,” In: Proceedings of the 9th EUROSIM Congress on Modelling and Simulation, EUROSIM,” The 57th SIMS Conference on Simulation and Modelling SIMS, pp. 680–686, 2016. DOI: 10.3384/ecp17142680.
  • P. Kumar, A. K. Parwani, D. K. Gupta and V. Vitankar, “Transient cold flow simulation of fast-fluidized bed air reactor with hematite as an oxygen carrier for chemical looping combustion,” Appl. Sci., vol. 11, no. 5, pp. 1–12, 2021. DOI: 10.3390/app11052288.
  • M. Yang, S. Banerjee and R. K. Agarwal, “Transient cold flow simulation of fast fluidized bed fuel reactors for chemical-looping combustion,” J. Energy Resour. Technol., vol. 140, no. 11, article no. 112203 (7 pages), Nov. 2018. DOI: 10.1115/1.4039415.
  • W. Shi, J. Yang, G. Li, Y. Zong and X. Yang, “Computational fluid dynamics–population balance modeling of gas–liquid two-phase flow in bubble column reactors with an improved breakup kernel accounting for bubble shape variations,” Heat Trans. Eng., vol. 41, no. 15–16, pp. 1414–1430, 2020. DOI: 10.1080/01457632.2019.1628493.
  • M. Syamlal and T. O’Brien, “Computer simulation of bubbles in a fluidized bed,” in Fluidization and Fluid Particle Systems: Fundamentals and Applications, AIChE Symp Ser., vol. 85, pp. 22–31, Jan. 1989.
  • T. Baumann, S. Zunft and R. Tamme, “Moving bed heat exchangers for use with heat storage in concentrating solar plants: A multiphase model,” Heat Trans. Eng., vol. 35, no. 3, pp. 224–231, 2013. DOI: 10.1080/01457632.2013.825154.
  • X. Wang, B. Jin, Y. Zhang, Y. Zhang and X. Liu, “Three-dimensional modeling of a coal-fired chemical looping combustion process in the circulating fluidized bed fuel reactor,” Energy Fuels, vol. 27, no. 4, pp. 2173–2184, 2013. DOI: 10.1021/ef302075n.
  • R. Breault, J. Weber, D. Straub and S. Bayham, “Computational fluid dynamics modeling of the fuel reactor in NETL’s 50 kWth chemical looping facility,” J. Energy Resour. Technol., vol. 139, no. 4, article no. 042211 (8 pages), Jul. 2017. DOI: 10.1115/1.4036324.
  • E. R. Monazam, R. W. Breault, R. Siriwardane, G. Richards and S. Carpenter, “Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism,” Chem Engg J., vol. 232, pp. 478–487, Oct. 2013. DOI: 10.1016/j.cej.2013.07.091.
  • A. Abad, et al., “Kinetics of redox reactions of ilmenite for chemical looping combustion,” Chem. Eng. Sci., vol. 66, no. 4, pp. 689–702, 2011. DOI: 10.1016/j.ces.2010.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.