Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 12
104
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of adiabatic and heat-conducting inserts in natural convection in inclined enclosures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 812-825 | Received 26 Jan 2022, Accepted 25 May 2022, Published online: 21 Jun 2022

References

  • G. Ziskind, V. Dubovsky, and R. Letan, “Ventilation by natural convection of a one-story building,” Energy Build, vol. 34, no. 1, pp. 91–102, 2002. DOI: 10.1016/S0378-7788(01)00080-9.
  • H. Zhai, B. Nie, B. Chen, and F. Xu, “Unsteady flows on a roof imposed by a periodic heat flux: 2D simulation and scaling analysis,” Int. J. Therm. Sci., vol. 145, pp. 106002, 2019. DOI: 10.1016/j.ijthermalsci.2019.106002.
  • H. Kumar, “CFD Simulation of velocity and temperature distribution inside refrigerator compartment,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 4199–4207, 2019.
  • J. Gastelurrutia, J. C. Ramos, G. S. Larraona, A. Rivas, J. Izagirre, and L. del Ro, “Numerical modelling of natural convection of oil inside distribution transformers,” Appl. Therm. Eng., vol. 31, no. 4, pp. 493–505, 2011. DOI: 10.1016/j.applthermaleng.2010.10.004.
  • M. E. Alami, M. Najam, E. Semma, A. Oubarra, and F. Penot, “Electronic components cooling by natural convection in horizontal channel with slots,” Energy Convers. Manag., vol. 46, no. 17, pp. 2762–2772, 2005. DOI: 10.1016/j.enconman.2005.01.005.
  • G. K. Batchelor, “Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures,” Quart. Appl. Math., vol. 12, no. 3, pp. 209–233, 1954. DOI: 10.1090/qam/64563.
  • G. de Vahl Davis, “Natural Convection of air in a square cavity: A benchmark numerical solution,” Int. J. Numer. Methods Fluids, vol. 3, no. 3, pp. 249–264, 1983. DOI: 10.1002/fld.1650030305.
  • N. C. Markatos and K. A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity,” Int. J. Heat Mass Transf., vol. 27, no. 5, pp. 744–772, 1984.
  • O. Aydin and W. Yang, “Natural convection in enclosures with localized heating from below and symmetrical cooling from sides,” Int. J. Numer. Meth. Heat Fluid Flow, vol. 10, no. 5, pp. 518–529, 2000. DOI: 10.1108/09615530010338196.
  • E. L. M. Padilla, M. A. S. Loureno, and A. Silveira-Neto, “Natural convection inside cubical cavities: Numerical solutions with two boundary conditions,” J Braz. Soc. Mech. Sci. Eng., vol. 35, no. 3, pp. 275–283, 2013. DOI: 10.1007/s40430-013-0033-y.
  • J. M. House, C. Beckermann, and T. F. Smith, “Effect of centered conducting body on natural convection heat transfer in an enclosure,” Numer. Heat Transf. Part A, vol. 18, no. 2, pp. 213–225, 1990. DOI: 10.1080/10407789008944791.
  • P. Bhave, A. Narasimhan, and D. A. S. Rees, “Natural convection heat transfer enhancement using adiabatic block: Optimal block size and Prandtl number effect,” Int. J. Heat Mass Transf., vol. 49, no. 2122, pp. 3807–3818, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.04.017.
  • P. S. Mahapatra, S. De, K. Ghosh, N. K. Manna, and A. Mukhopadhyay, “Heat transfer enhancement and entropy generation in a square enclosure in the presence of adiabatic and isothermal blocks,” Numer. Heat Transf. Part A, vol. 64, no. 7, pp. 577–596, 2013. DOI: 10.1080/10407782.2013.784679.
  • J. R. Lee, “Numerical simulation of natural convection in a horizontal enclosure: Part I. On the effect of adiabatic obstacle in middle,” Int. J. Heat Mass Transf., vol. 124, pp. 220–232, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.077.
  • W. Zhang and X. Su, “Effect of an internal thermal-conductive cylinder on the conjugate conduction-convection in an enclosure,” Numer. Heat Transf. Part A, vol. 80, no. 10, pp. 505–523, 2021. DOI: 10.1080/10407782.2021.1959824.
  • H. Ozoe, H. Sayama, and S. W. Churchill, “Natural convection in an inclined rectangular channel at various aspect ratios and angles – experimental measurements,” Int. J. Heat Mass Transf., vol. 18, no. 12, pp. 1425–1431, 1975. DOI: 10.1016/0017-9310(75)90256-2.
  • J. Rasoul and P. Prinos, “Natural convection in an inclined enclosure,” Int. J. Numer. Method Heat Fluid Flow, vol. 7, no. 5, pp. 438–478, 1997. DOI: 10.1108/09615539710187783.
  • M. Rahman and M. A. R. Sharif, “Numerical study of laminar natural convection in inclined rectangular enclosures of various aspect ratios,” Numer. Heat Transf. Part A, vol. 44, no. 4, pp. 355–373, 2003. DOI: 10.1080/713838233.
  • S. M. Aminossadati and B. Ghasemi, “The effects of orientation of an inclined enclosure on laminar natural convection,” Int. J. Heat Technol., vol. 23, no. 2, pp. 43–49, 2005.
  • C. E. Bensaci, A. Labed, M. Zellouf, and A. Moummi, “Numerical study of natural convection in an inclined enclosure: Application to flat plate solar collectors,” MMEP. vol. 4, no. 1, pp. 1–6, 2017. DOI: 10.18280/mmep.040101.
  • M. K. Das and K. S. K. Reddy, “Conjugate natural convection heat transfer in an inclined square cavity containing a conducting block,” Int. J. Heat Mass Transf., vol. 49, pp. 4987–5000, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.041.
  • X. Liang, H. Zhang, and Z. Tian, “A fourth-order compact difference algorithm for numerical solution of natural convection in an inclined square enclosure,” Numer. Heat Transf. Part A, vol. 80, no. 6, pp. 255–290, 2021. DOI: 10.1080/10407782.2021.1940065.
  • A. Bejan, Convection Heat Transfer, 4th ed. Hoboken: Wiley, 2013.
  • ANSYS, ANSYS Fluent Theory Guide. Canonsburg: Ansys Inc., 2019.
  • C. Bai, G. Zhang, Y. Qiu, X. Leng, and M. Tian, “A new method for heat transfer and fluid flow performance simulation of plate heat exchangers,” Numer. Heat Transf. Part B, vol. 75, no. 2, pp. 93–110, 2019. DOI: 10.1080/10407790.2019.1607117.
  • H. Benzenine, S. Abboudi, and R. Saim, “Effect of the presence of a shoulder on the thermal and dynamic structure of a laminar flow in an air-plane solar collector,” Numer. Heat Transf. Part B, vol. 77, no. 3, pp. 257–270, 2020. DOI: 10.1080/10407790.2019.1694334.
  • S. Rath and S. K. Dash, “Laminar and turbulent natural convection from a stack of thin hollow horizontal cylinders: A numerical study,” Numer. Heat Transf. Part A, vol. 75, no. 11, pp. 753–775, 2019. DOI: 10.1080/10407782.2019.1608776.
  • M. K. Dash and S. K. Dash, “3-D numerical investigation on buoyancy-induced flow and heat transfer from a hollow horizontal steel cylinder with finite wall thickness,” Numer. Heat Transf. Part A, vol. 78, no. 6, pp. 252–275, 2020. DOI: 10.1080/10407782.2020.1789372.
  • V. Chandrakar, J. R. Senapati, and A. Mohanty, “Conjugate heat transfer due to conduction, natural convection, and radiation from a vertical hollow cylinder with finite thickness,” Numer. Heat Transf. Part A, vol. 79, no. 6, pp. 463–487, 2021. DOI: 10.1080/10407782.2020.1847524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.