306
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

An Experimental and Numerical Analysis of Natural Convection in Open Square Enclosure

, &

References

  • M. E. Alami, M. Najam, E. Semma, A. Oubarra, and F. Penot, “Electronic components cooling by natural convection in horizontal channel with slots,” Energy Convers. Manag., vol. 46, no. 17, pp. 2762–2772, 2005. DOI: 10.1016/j.enconman.2005.01.005.
  • C. D. Kylstra, “Natural convection cooling for offshore nuclear power plants,” Nucl. Technol., vol. 22, no. 2, pp. 191–195, 1974. DOI: 10.13182/NT74-A31402.
  • Y. Fan, Y. Li, J. Hang, K. Wang, and X. Yang, “Natural convection flows along a 16-storey high-rise building,” Build. Environ., vol. 107, pp. 215–225, Aug. 2016. DOI: 10.1016/j.buildenv.2016.08.003.
  • Y. Varol and H. F. Oztop, “A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors,” Build. Environ., vol. 43, no. 9, pp. 1535–1544, 2008. DOI: 10.1016/j.buildenv.2007.09.002.
  • E. A. Smith and S. Sokhansanj, “Moisture transport caused by natural convection in grain stores,” J. Agric. Eng. Res., vol. 47, pp. 23–34, Jan. 1990. DOI: 10.1016/0021-8634(90)80027-R.
  • A. Kumar, M. Bhattacharya, and J. Blaylock, “Numerical simulation of natural convection heating of canned thick viscous liquid food products,” J. Food Sci., vol. 55, no. 5, pp. 1403–1411, 1990. DOI: 10.1111/j.1365-2621.1990.tb03946.x.
  • V. Kishor, S. Singh, and A. Srivastava, “Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: whole field experiments and numerical simulations,” Exp. Therm. Fluid Sci., vol. 99, pp. 71–84, May 2018. DOI: 10.1016/j.expthermflusci.2018.07.021.
  • B. Calcagni, F. Marsili, and M. Paroncini, “Natural convective heat transfer in square enclosures heated from below,” Appl. Therm. Eng., vol. 25, no. 16, pp. 2522–2531, Feb. 2005. DOI: 10.1016/j.applthermaleng.2004.11.032.
  • G. Nardini, M. Paroncini, and F. Corvaro, “Effect of heat transfer on natural convection in a square cavity with two source pairs,” Heat Transf. Eng., vol. 35, no. 9, pp. 875–886, 2014. DOI: 10.1080/01457632.2014.852900.
  • É. Fontana, A. Da Silva, and V. C. Mariani, “Natural convection in a partially open square cavity with internal heat source: an analysis of the opening mass flow,” Int. J. Heat Mass Transf., vol. 54, no. 7–8, pp. 1369–1386, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.11.053.
  • V. C. Mariani and A. D. Silva, “Natural convection: analysis of partially open enclosures with an internal heated source,” Numer. Heat Transf. A Appl., vol. 52, no. 7, pp. 595–619, 2007. DOI: 10.1080/10407780701338423.
  • T. H. Hsu and K. Y. Hong, “Natural convection of micropolar fluids in an open cavity,” Numer. Heat Transf. A Appl., vol. 50, no. 3, pp. 281–300, 2006. DOI: 10.1080/10407780600605591.
  • A. Ben-Nakhi, M. M. Efterkhari, and D. I. Loveday, “Natural convection heat transfer in a partially open square cavity with a thin fin attached to the hot wall,” J. Heat Transf., vol. 130, no. 5, p. 052502, May 2008. DOI: 10.1115/1.2885166.
  • K. M. Gangawane, R. P. Bharti, and S. Kumar, “Lattice Boltzmann analysis of natural convection in a partially heated open ended enclosure for different fluids,” J. Taiwan Inst. Chem. Eng., vol. 49, pp. 27–39, Apr. 2015. DOI: 10.1016/j.jtice.2014.11.020.
  • M. M. Elsayed, N. M. Al-Najem, M. M. El-Refaee, and A. A. Noor, “Numerical study of natural convection in fully open tilted cavities,” Heat Transf. Eng., vol. 20, no. 3, pp. 73–85, 1999. DOI: 10.1080/014576399271448.
  • W. Chakroun, “Effect of boundary wall conditions on heat transfer for fully opened tilted cavity,” J. Heat Transf., vol. 126, no. 6, pp. 915–923, 2004. DOI: 10.1115/1.1798931.
  • E. Bilgen and H. Oztop, “Natural convection heat transfer in partially open inclined square cavities,” Int. J. Heat Mass Transf., vol. 48, no. 8, pp. 1470–1479, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.020.
  • R. Abhinav, et al., “Numerical study on effect of vent locations on natural convection in an enclosure with an internal heat source,” Int. Commun. Heat Mass Transf., vol. 49, pp. 69–77, Sep. 2013. DOI: 10.1016/j.icheatmasstransfer.2013.09.001.
  • S. Z. Shuja, M. O. Iqbal, and B. S. Yilbas, “Natural convection in a square cavity due to a protruding body - aspect ratio consideration,” Heat Mass Transf. und Stoffuebertragung, vol. 37, no. 4–5, pp. 361–369, 2001. DOI: 10.1007/s002310000167.
  • E. Bilgen and A. Balkaya, “Natural convection on discrete heaters in a square enclosure with ventilation ports,” Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 1182–1189, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.01.013.
  • E. Bilgen and A. Muftuoglu, “Natural convection in an open square cavity with slots,” Int. Commun. Heat Mass Transf., vol. 35, no. 8, pp. 896–900, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.05.001.
  • X. H. Ren, R. Z. Liu, Y. H. Wang, L. Wang, and F. Y. Zhao, “Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: reversal and cooperative flow dynamics,” Renew. Energy, vol. 138, pp. 354–367, Jan. 2019. DOI: 10.1016/j.renene.2019.01.090.
  • K. Kalidasan, R. Velkennedy, and P. R. Kanna, “Laminar natural convection inside the open, forward-facing stepped rectangular enclosure with a partition and time-variant temperature on the stepped top wall,” Int. Commun. Heat Mass Transf., vol. 67, pp. 124–136, Oct. 2015. DOI: 10.1016/j.icheatmasstransfer.2015.05.027.
  • É. Fontana, C. A. Capeletto, A. D. Silva, and V. C. Mariani, “Three-dimensional analysis of natural convection in a partially-open cavity with internal heat source,” Int. J. Heat Mass Transf., vol. 61, no. 1, pp. 525–542, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.047.
  • E. Yu and Y. Joshi, “A numerical study of three-dimensional laminar natural convection in a vented enclosure,” Int. J. Heat Fluid Flow, vol. 18, no. 6, pp. 600–612, 1997. DOI: 10.1016/S0142-727X(97)00002-7.
  • H. F. Oztop, et al., “Numerical analysis of entropy generation due to natural convection in three-dimensional partially open enclosures,” J. Taiwan Inst. Chem. Eng., vol. 75, pp. 131–140, Mar. 2017. DOI: 10.1016/j.jtice.2017.03.014.
  • D. M. Sefcik, B. W. Webb, and H. S. Heaton, “Natural convection in vertically vented enclosures,” J. Heat Transf., vol. 113, no. 4, pp. 912–918, 1991. DOI: 10.1115/1.2911221.
  • Properties Tables and Charts, http://cecs.wright.edu/people/faculty/sthomas/htappendix01.pdf. Accessed Apr. 11, 2021.
  • J. E. Hatch, Aluminum: Properties and Physical Metallurgy. Metal Parks, OH: ASM International, 1984.
  • Tenwolde, J. D. McNatt, and L. Krahn, “Thermal properties of wood and wood panel products for use in buildings,” Forest Products Lab, Rep. DOE/USDA-21697/1, Forest Service, Madison, WI, 1988.
  • S. Mohanan and A. Srivastava, “Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids,” Appl. Opt., vol. 53, no. 11, pp. 2331–2344, 2014. DOI: 10.1364/ao.53.002331.
  • J. Ma, et al., “Two-dimensional continuous wavelet transform for phase determination of complex interferograms,” Appl. Opt., vol. 50, no. 16, pp. 2425–2430, 2011. DOI: 10.1364/AO.50.002425.
  • J. Ma, Z. Wang, M. Vo, and L. Luu, “Parameter discretization in two-dimensional continuous wavelet transform for fast fringe pattern analysis,” Appl. Opt., vol. 50, no. 34, pp. 6399–6408, 2011. DOI: 10.1364/AO.50.006399.
  • S. Narayan, A. K. Singh, and A. Srivastava, “Interferometric study of natural convection heat transfer phenomena around array of heated cylinders,” Int. J. Heat Mass Transf., vol. 109, pp. 278–292, Feb. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.106.
  • Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt., vol. 43, no. 13, pp. 2695–2702, 2004. DOI: 10.1364/AO.43.002695.
  • Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analyses,” Appl. Opt., vol. 47, no. 29, pp. 5408–5419, 2008. DOI: 10.1364/AO.47.005408.
  • Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng., vol. 45, no. 2, pp. 304–317, 2007. DOI: 10.1016/j.optlaseng.2005.10.012.
  • K. Choudhury, R. K. Singh, S. Narayan, A. Srivastava, and A. Kumar, “Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: two-dimensional mapping of the ambient and plasma density,” Phys. Plasmas, vol. 23, no. 4, article no 042108 (13 pages), Apr 2016. DOI: 10.1063/1.4947032.
  • D. Mishra, K. Muralidhar, and P. Munshi, “Experimental study of Rayleigh-Benard convection at intermediate Rayleigh numbers using interferometric tomography,” Fluid Dyn. Res., vol. 25, no. 5, pp. 231–255, 1999. DOI: 10.1016/S0169-5983(98)00044-6.
  • L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng., vol. 48, no. 2, pp. 141–148, 2010. DOI: 10.1016/j.optlaseng.2009.04.003.
  • Z. Zhang, Z. Jing, Z. Wang, and D. Kuang, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection prolometry,” Opt. Lasers Eng., vol. 50, no. 8, pp. 1152–1160, 2012. DOI: 10.1016/j.optlaseng.2012.03.004.
  • P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt., vol. 35, no. 9, pp. 1566–1573, 1996. DOI: 10.1364/ao.35.001566.
  • D. Naylor and N. Duarte, “Direct temperature gradient measurement using interferometry,” Exp. Heat Transf., vol. 12, no. 4, pp. 279–294, 1999. DOI: 10.1080/089161599269609.
  • Fluent User’s Guide, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm. Accessed Apr. 11, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.