180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimizing Thermo-Hydraulic Performance in Heat Exchanger with Gradient and Multi-Layered Porous Foams

, , , &

References

  • A. McEntire and B. Webb, “Local forced convective heat transfer from protruding and flush-mounted two-dimensional discrete heat sources,” Int. J. Heat Mass Transfer., vol. 33, no. 7, pp. 1521–1533, Jul. 1990. DOI: 10.1016/0017-9310(90)90048-Y.
  • M. Alsaady, et al., “An experimental investigation on the effect of ferrofluids on the efficiency of novel parabolic trough solar collector under laminar flow conditions,” Heat Transfer Engng., vol. 40, no. 9-10, pp. 753–761, 2019. DOI: 10.1080/01457632.2018.1442309.
  • F. Ma and P. Zhang, “Heat transfer characteristics of a volumetric absorption solar collector using nano-encapsulated phase change slurry,” Heat Transfer Engng., vol. 39, no. 17-18, pp. 1487–1497, 2018. DOI: 10.1080/01457632.2017.1369827.
  • T. Hung, Y. Huang and W. Yan, “Thermal performance analysis of porous-microchannel heat sinks with different configuration designs,” Int. J. Heat Mass Transfer, vol. 66, pp. 235–243, Nov. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.019.
  • A. Heydari, M. Shateri and S. Sanjari, “Numerical analysis of a small size baffled shell-and-tube heat exchanger using different nano-fluids,” Heat Transfer Engng., vol. 39, no. 2, pp. 141–153, 2018. DOI: 10.1080/01457632.2017.1288052.
  • M. Siavashi, H. R. T. Bahrami and H. Saffari, “Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model,” Energy, vol. 93, no. 2, pp. 2451–2466, 2015. DOI: 10.1016/j.energy.2015.10.100.
  • A. Bousri, R. Nebbali, R. Bennacer, K. Bouhadef and H. Beji, “Numerical investigation of forced convection non-equilibrium effects on heat and mass transfer in porous media,” Heat Transfer Engng., vol. 38, no. 1, pp. 122–136, 2017. DOI: 10.1080/01457632.2016.1156422.
  • M. Sheikholeslami, “Numerical simulation of magnetic nanofluid natural convection in porous media,” Physics Letters A., vol. 381, no. 5, pp. 494–503, Feb. 2017. DOI: 10.1016/j.physleta.2016.11.042.
  • M. Sheikholeslami, “Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method,” J. Molecular Liquid., vol. 249, pp. 739–746, Jan. 2018. DOI: 10.1016/j.molliq.2017.11.069.
  • G. H. R. Kefayati, “Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part II: Entropy generation),” Int. J. Heat Mass Transf., vol. 94, pp. 582–624, Mar. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.043.
  • G. H. R. Kefayati, “Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity,” Powder Technol., vol. 299, pp. 127–149, Oct.2016. DOI: 10.1016/j.powtec.2016.05.032.
  • R. Saim, H. Benzenine, H. F. Oztop and K. Al-Salem, “Turbulent flow and heat transfer enhancement of forced convection over heated baffles in a channel: Effect of pitch of baffles,” Int. J. Numerical Method. Heat Fluid Flow, vol. 23, no. 4, pp. 613–633, May 2013. DOI: 10.1108/09615531311323773.
  • M. Siavashi, V. Bordbar and P. Rahnama, “Heat transfer and entropy generation study of non-Darcy double-diffusive natural convection in inclined porous enclosures with different source configurations,” APPl. Thermal Engng., vol. 110, pp. 1462–1475, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.09.060.
  • E. Abu-Nada, H. F. Oztop and I. Pop, “Effects of surface waviness on heat and fluid flow in a nanofluid filled closed space with partial heating,” Heat Mass Transfer, vol. 52, no. 9, pp. 1909–1921, Sep. 2016. DOI: 10.1007/s00231-015-1714-0.
  • R. Rachedi and S. Chikh, “Enhancement of electronic cooling by insertion of foam materials,” Heat Mass Transfer, vol. 37, no. 4–5, pp. 371–378, Jul. 2001. DOI: 10.1007/s002310100192.
  • Y. Ge, Z. Liu and W. Liu, “Multi-objective genetic optimization of the heat transfer for tube inserted with porous media,” Int. J. Heat Mass Transfer, vol. 101, pp. 981–987, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.118.
  • C. Hwang and A. S. M. Masud, Multi-Objective Decision Making–Methods and Application: A State-of-the-Art Study," Berlin, New York: Springer-Verlag, 1979, DOI: 10.1007/978-3-642-48318-9.
  • K. Ghasemi and M. Siavashi, “Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls,” J. Molecular Liquids, vol. 233, pp. 415–430, May. 2017. DOI: 10.1016/j.molliq.2017.03.016.
  • K. Ghasemi and M. Siavashi, “MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios,” J. Magnetism Magnetic Material., vol. 442, pp. 474–490, Nov. 2017. DOI: 10.1016/j.jmmm.2017.07.028.
  • M. H. Toosi and M. Siavashi, “Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer,” J. Molecular Liquids, vol. 238, pp. 553–569, Jul. 2017. DOI: 10.1016/j.molliq.2017.05.015.
  • B. Wang, et al., “Development and numerical investigation of novel gradient-porous heat sinks,” Energy Conversion Management, vol. 106, pp. 1370–1378, Dec. 2015. DOI: 10.1016/j.enconman.2015.10.071.
  • Z. Zheng, M. Li and Y. He, “Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD,” Int. J. Heat Mass Transfer, vol. 87, pp. 376–379, Aug. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.016.
  • S. M. A. Naqvi and Q. Wang, “Numerical comparison of thermohydraulic performance and fluid-induced vibrations for STHXs with segmental, helical, and novel clamping anti-vibration baffles,” Energies, vol. 12, no. 3, article no. 540 (18 pages), Feb. 2019. DOI: 10.3390/en12030540.
  • S. M. A. Naqvi, K. E. Elfeky, Y. Cao and Q. Wang, “Numerical analysis on performances of shell side in segmental baffles, helical baffles and novel clamping anti-vibration baffles with square twisted tubes shell and tube heat exchangers,” Energy Procedia, vol. 158, pp. 5770–5775, Feb. 2019. DOI: 10.1016/j.egypro.2019.01.553.
  • S. M. A. Naqvi and Q. Wang, “Performance Enhancement of Shell–Tube Heat Exchanger by Clamping Anti-Vibration Baffles with Porous Media Involvement,” Heat Transfer Engng., vol. 42, no. 18, pp. 1523–1538, 2021. DOI: 10.1080/01457632.2020.1807098.
  • D. P. Kroese, S. Porotsky and R. Y. Rubinstein, “The cross-entropy method for continuous multi-extremal optimization,” Method. Comput. Appl. Probab., vol. 8, no. 3, pp. 383–407, 2006. Oct DOI: 10.1007/s11009-006-9753-0.
  • R. Gupta, L. Smith, J. Njuguna, A. Deighton and K. Pancholi, “Insulating MgO-Al2O3-LDPE nanocomposites for offshore medium voltage DC cable,” ACS Appl. Electron. Mater., vol. 2, no. 7, pp. 1880–1891, Jun. 2020. DOI: 10.1021/acsaelm.0c00052.
  • R. Gupta, et al., “Flexible low-density polyethylene–BaTiO3 nanoparticle composites for monitoring leakage current in high-tension equipment,” ACS Appl. Nano. Mater., vol. 4, no. 3, pp. 2413–2422, Mar. 2021. DOI: 10.1021/acsanm.0c02719.
  • R. Gupta, et al., “Novel method of healing the fibre reinforced thermoplastic composite: A potential model for offshore applications,” Composites Commun., vol. 16, pp. 67–78, Dec. 2019. DOI: 10.1016/j.coco.2019.08.014.
  • R. Gupta, et al., “Effect of oleic acid coating of iron oxide nanoparticles on properties of magnetic polyamide-6 nanocomposite,” J Mineral. Metal. Mater. Society (TMS), vol. 71, no. 9, pp. 3119–3128, Jul. 2019. DOI: 10.1007/s11837-019-03622-5.
  • S. E. Rad, H. Afshin and B. Farhanieh, “Heat transfer enhancement in shell-and-tube heat exchangers using porous media,” Heat Transfer Engng., vol. 36, no. 3, pp. 262–277, 2015. DOI: 10.1080/01457632.2014.916155.
  • M. Khoshvaght-Aliabadi, S. E. H. Rad and F. Hormozi, “Al2O3-water nanofluid inside wavy mini-channel with different cross-sections,” J. Taiwan Inst. Chem. Engineer., vol. 58, pp. 8–18, Jan. 2016. DOI: 10.1016/j.jtice.2015.05.029.
  • M. Amani, P. Amani, A. Kasaeian, O. Mahian and W. Yan, “Two-phase mixture model for nanofluid turbulent flow and heat transfer: Effect of heterogeneous distribution of nanoparticles,” Chem. Engng. Sci., vol. 167, pp. 135–144, Aug. 2017. DOI: 10.1016/j.ces.2017.03.065.
  • J. M. Dixon and F. A. Kulacki, Mixed Convection in Fluid Superposed Porous Layers. Berlin: Springer International Publishing, 2017, DOI: 10.1007/978-3-319-50787-3.
  • S. Ergun and A. A. Orning, “Fluid flow through randomly packed columns and fluidized beds,” Ind. Eng. Chem., vol. 41, no. 6, pp. 1179–1184, 1949. Jun DOI: 10.1021/ie50474a011.
  • L. Peselnick and I. Zietz, “Internal friction of fine-grained limestones at ultrasonic frequencies,” Geophysics, vol. 24, no. 2, pp. 285–296, Apr. 1959. DOI: 10.1190/1.1438583.
  • A. Akbarinia and R. Laur, “Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two-phase approach,” Int. J. Heat Fluid Flow., vol. 30, no. 4, pp. 706–714, Aug. 2009. DOI: 10.1016/j.ijheatfluidflow.2009.03.002.
  • A. Miller and D. Gidaspow, “Dense, vertical gas‐solid flow in a pipe,” AIChE J., vol. 38, no. 11, pp. 1801–1815, Nov. 1992. DOI: 10.1002/aic.690381111.
  • O. A. Beg, M. M. Rashidi, M. Akbari and A. Hosseini, “Comparative numerical study of single-phase and two-phase models for bio-nanofluid transport phenomena,” J. Mech. Med. Biol., vol. 14, no. 01, pp. 1450011, article no. 1450011, 2014. DOI: 10.1142/S0219519414500110.
  • M. Manninen, V. Taivassalo and S. Kallio, On the Mixture Model for Multiphase Flow," Finland: Technical Research Centre of Finland, VTT Publications, vuorimiehentie 5, 1996.
  • L. Schiller and A. Naumann, “A drag coefficient correlation,” Zeitschrift Des Vereins Deutscher Ingenieure, vol. 77, no. 51, pp. 318–320, 1935.
  • Z. Zheng, M. Li and Y. He, “Optimization of porous insert configuration in a central receiver tube for heat transfer enhancement,” Energy Procedia, vol. 75, pp. 502–507, Aug. 2015. DOI: 10.1016/j.egypro.2015.07.439.
  • Y. Bai and Q. Bai, Subsea Engineering Handbook – Second Edition," Gulf Professional Publishing, an Imprint of Elsevier, 2019, DOI: 10.1016/B978-0-12-812622-6.01001-0
  • R. Van der Sman, “Prediction of airflow through a vented box by the Darcy–Forchheimer equation,” J. Food Engng., vol. 55, no. 1, pp. 49–57, Nov. 2002. DOI: 10.1016/S0260-8774(01)00241-2.
  • H. Taleshbahrami and H. Saffari, “Optimization of the C3MR cycle with genetic algorithm,” Trans. Canadian Soc. Mech. Engng., vol. 34, no. 3-4, pp. 433–448, Sep. 2010. DOI: 10.1139/tcsme-2010-0026.
  • A. Kasaeian, et al., “Nanofluid flow and heat transfer in porous media: A review of the latest developments,” Int. J. Heat Mass Transfer, vol. 107, pp. 778–791, Apr. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.074.
  • M. Raja, R. Vijayan, P. Dineshkumar and M. Venkatesan, “Review on nanofluids characterization, heat transfer characteristics and applications,” Renewable Sustainable Energy Review., vol. 64, pp. 163–173, Oct. 2016. DOI: 10.1016/j.rser.2016.05.079.
  • P. Raj and S. Subudhi, “A review of studies using nanofluids in flat-plate and direct absorption solar collectors,” Renewable Sustainable Energy Review., vol. 84, pp. 54–74, Mar. 2018. DOI: 10.1016/j.rser.2017.10.012.
  • M. Sheikholeslami and D. D. Ganji, Applicat. Nanofluid Heat Transfer Enhancement, 2017. (1st ed.) Elsevier-William Andrew. DOI: 10.1016/b978-0-08-102172-9.00009-5.
  • B. Ilhan and H. Erturk, “Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe,” Int. J. Heat Mass Transfer, vol. 111, pp. 500–507, Aug. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.040.
  • A. M. Rashad, M. M. Rashidi, G. Lorenzini, S. E. Ahmed and A. M. Aly, “Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu-water nanofluid,” Int. J. Heat Mass Transfer, vol. 104, pp. 878–889, Jan. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.025.
  • M. J. Maghrebi, M. Nazari and T. Armaghani, “Forced convection heat transfer of nanofluids in a porous channel,” Transp Porous Med., vol. 93, no. 3, pp. 401–413, Feb. 2012. DOI: 10.1007/s11242-012-9959-2.
  • M. Chandrasekar, S. Suresh and A. C. Bose, “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid,” Experi. Thermal Fluid Sci., vol. 34, no. 2, pp. 210–216, Feb. 2010. DOI: 10.1016/j.expthermflusci.2009.10.022.
  • D. Wen, G. Lin, S. Vafaei and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology, vol. 7, no. 2, pp. 141–150, Apr. 2009. DOI: 10.1016/j.partic.2009.01.007.
  • Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” J. Heat Transfer, vol. 125, no. 1, pp. 151–155, Feb. 2003. DOI: 10.1115/1.1532008.
  • M. Siavashi, H. R. T. Bahrami and E. Aminian, “Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams,” APPl. Thermal Engng, vol. 138, pp. 465–474, Jun. 2018. DOI: 10.1016/j.applthermaleng.2018.04.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.