86
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Heat Transfer Enhancement with Ni-Water Nanofluid Flowing through a Prismatic Glass Louver for Solar Energy Harvest and Illumination

, &

References

  • O. Ellabban, H. Abu-Rub and F. Blaabjerg, “Renewable energy resources: current status, future prospects and their enabling technology,” Renew. Sust. Energ. Rev., vol. 39, pp. 748–764, 2014. DOI: 10.1016/j.rser.2014.07.113.
  • US Department of Energy, Solar Futures Study. Available: https://www.energy.gov/articles/doe-releases-solar-futures-study-providing-blueprint-zero-carbon-grid. Accessed: Aug. 10, 2021.
  • K. Saidi and A. Omri, “The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries,” Environ Res, vol. 186, pp. 109567, 2020. DOI: 10.1016/j.envres.2020.109567.
  • A. Vlachokostas and N. Madamopoulos, “Liquid filled prismatic louver façade for enhanced daylighting in high-rise commercial buildings,” Opt. Express, vol. 23, no. 15, pp. A805–A818, 2015. DOI: 10.1364/OE.23.00A805.
  • A. Vlachokostas and N. Madamopoulos, “Daylight and thermal harvesting performance evaluation of a liquid filled prismatic façade using the radiance five-phase method and EnergyPlus,” Build. Environ., vol. 126, pp. 396–409. 2017. DOI: 10.1016/j.buildenv.2017.10.017.
  • M. Alva, A. Vlachokostas and N. Madamopoulos, “Experimental demonstration and performance evaluation of a complex fenestration system for daylighting and thermal harvesting,” Sol. Energy, vol. 197, pp. 385–395. 2020. DOI: 10.1016/j.solener.2020.01.012.
  • Y. M. Cai and Z. Guo, “Spectral Monte Carlo simulation of collimated solar irradiation transfer in a water-filled prismatic louver,” Appl. Opt., vol. 57, no. 12, pp. 3021–3030, 2018. DOI: 10.1364/AO.57.003021.
  • Y. M. Cai and Z. Guo, “Spectral investigation of solar energy absorption and light transmittance in a water-filled prismatic glass louver,” Sol. Energy, vol. 179, pp. 164–173, 2019. DOI: 10.1016/j.solener.2018.12.066.
  • Y. M. Cai, Y. Nan and Z. Guo, “Enhanced absorption of solar energy in a daylighting louver with Ni-water nanofluid,” Int. J. Heat Mass Transf., vol. 158, pp. 119921, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119921.
  • Z. Guo, “A review on heat transfer enhancement with nanofluids,” J. Enhanc. Heat Transf., vol. 27, no. 1, pp. 1–70, 2020. DOI: 10.1615/JEnhHeatTransf.2019031575.
  • T. Ma, Z. Guo, M. Lin and Q. Wang, “Recent trends on nanofluid heat transfer machine learning research applied to renewable energy,” Renew. Sust. Energ. Rev., vol. 138, pp. 110494, 2021. DOI: 10.1016/j.rser.2020.110494.
  • US Department of Energy, About the Building Technologies Office. Available: https://www.energy.gov/eere/buildings/about-building-technologies-office. Accessed: May 15, 2019.
  • A. H. Rasheed, H. B. Alias and S. D. Salman, “Experimental and numerical investigations of heat transfer enhancement in shell and helically microtube heat exchanger using nanofluids,” Int. J. Therm. Sci., vol. 159, pp. 106547, 2021. DOI: 10.1016/j.ijthermalsci.2020.106547.
  • S. Mukherjee, S. R. Panda, P. C. Mishra and P. Chaudhurim, “Heat transfer enhancement with TiO2/water nanofluid in a horizontal circular tube subjected to varying heat flux: an experimental study,” J. Enhanc. Heat Transf., vol. 28, no. 8, pp. 21–48, 2021. DOI: 10.1615/JEnhHeatTransf.2021039303.
  • M. J. Assael, K. D. Antoniadis, W. A. Wakeham and X. Zhang, “Potential applications of nanofluids for heat transfer,” Int. J. Heat Mass Transf., vol. 138, pp. 597–607. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.086.
  • S. K. Das, S. U. Choi and H. E. Patel, “Heat transfer in nanofluids—a review,” Heat Transf. Eng., vol. 27, no. 10, pp. 3–19, 2006. DOI: 10.1080/01457630600904593.
  • M. I. Pryazhnikov, A. V. Minakov, V. Ya. Rudyak and D. V. Guzei, “Thermal conductivity measurements of nanofluids,” Int. J. Heat Mass. Transf., vol. 104, pp. 1275–1282, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.080.
  • P. K. Das, A. K. Mallik, R. Ganguly and A. K. Santra, “Stability and thermophysical measurements of TiO2 (anatase) nanofluids with different surfactants,” J. Mol. Liq., vol. 254, pp. 98–107. 2018. DOI: 10.1016/j.molliq.2018.01.075.
  • J. Bowers, et al., “Flow and heat transfer behavior of nanofluids in microchannels,” Prog. Nat. Sci., vol. 28, no. 2, pp. 225–234, 2018. DOI: 10.1016/j.pnsc.2018.03.005.
  • Z. Guo, et al., “Heat transfer enhancement – a brief review of literature in 2020 and prospects,” Heat Transf. Res., vol. 52, no. 10, pp. 65–92, 2021. DOI: 10.1615/HeatTransRes.2021038770.
  • L. T. Benos and I. E. Sarris, “The interfacial nanolayer role on magnetohydrodynamic natural convection of an Al2O3-water nanofluid,” Heat Transf. Eng, vol. 42, no. 2, pp. 89–105, 2021. DOI: 10.1080/01457632.2019.1692487.
  • Z. Said, M. H. Sajid, R. Saidur, G. A. Mahdiraji and N. A. Rahim, “Evaluating the optical properties of TiO2 nanofluid for a direct absorption solar collector,” Numer. Heat Transf. Part A: Appl., vol. 67, no. 9, pp. 1010–1027, 2015. DOI: 10.1080/10407782.2014.955344.
  • L. Al-Gebory and M. P. Mengüc, “A review of optical and radiative properties of nanoparticle suspensions: effects of particle stability, agglomeration, and sedimentation,” J. Enhanc. Heat. Transf., vol. 27, no. 3, pp. 207–247, 2020. DOI: 10.1615/JEnhHeatTransf.2020033420.
  • M. Sharifpur, S. O. Giwa, K. Y. Lee, H. Ghodsinezhad and J. P. Meyer, “Experimental investigation into natural convection of zinc oxide/water nanofluids in a square cavity,” Heat Transf. Eng., vol. 42, no. 19–20, pp. 1675–1687, 2021. DOI: 10.1080/01457632.2020.1818384.
  • Y. Tong, H. Lee, W. Kang and H. Cho, “Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid,” Appl. Therm. Eng., vol. 159, pp. 113959, 2019. DOI: 10.1016/j.applthermaleng.2019.113959.
  • Y. Hu, H. Li, Y. He, Z. Liu and Y. Zhao, “Effect of nanoparticle size and concentration on boiling performance of SiO2 nanofluid,” Int. J. Heat Mass Transf., vol. 107, pp. 820–828, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.090.
  • M. Milanese, et al., “Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems—Part I: water-based nanofluids behavior,” Sol. Energy Mater. Sol. Cells, vol. 147, pp. 315–320, 2016. DOI: 10.1016/j.solmat.2015.12.027.
  • F. Pourfattah, M. Motamedian, G. Sheikhzadeh, D. Toghraie and O. A. Akbari, “The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of water-Al2O3 nanofluid in a tube,” Int. J. Mech. Sci., vol. 131–132, pp. 1106–1116. 2017. DOI: 10.1016/j.ijmecsci.2017.07.049.
  • A. A. Alrashed, et al., “The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel,” Physica B: Condens. Matter., vol. 537, pp. 176–183, 2018. DOI: 10.1016/j.physb.2018.02.022.
  • L. Syam Sundar, M. K. Singh, I. Bidkin and A. C. Sousa, “Experimental investigations in heat transfer and friction factor of magnetic Ni nanofluid flowing in a tube,” Int. J. Heat Mass Transf., vol. 70, pp. 224–234, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.004.
  • Y. Nan, Y. M. Cai and Z. Guo, “Heat transfer and fluid flow in a water-filled glass louver subject to solar irradiation,” Heat Transf. Res., vol. 51, no. 1, pp. 25–39, 2020. DOI: 10.1615/HeatTransRes.2019031074.
  • C. Gueymard, “SMARTS: Simple model of the atmospheric radiative transfer of sunshine,” NREL. https://www.nrel.gov/grid/solar-resource/smarts.html. Accessed: May 20, 2019.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, London: Oxford University Press, 1873.
  • J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanopart. Res., vol. 6, no. 6, pp. 577–588, 2004. DOI: 10.1007/s11051-005-6635-2.
  • Y. M. Xuan, Q. Li and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AIChE J, vol. 49, no. 4, pp. 1038–1043, 2003. DOI: 10.1002/aic.690490420.
  • J. Koo and C. Kleinstreuer, “Laminar nanofluid flow in microheat-sinks,” Int. J. Heat Mass Transf., vol. 48, no. 13, pp. 2652–2661, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.01.029.
  • S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transf., vol. 18, no. 11, pp. 1323–1329, 1975. DOI: 10.1016/0017-9310(75)90243-4.
  • C. Cianfrini, M. Corcione, A. D'Orazio and E. Habib, “Laminar natural convection heat transfer from vertical and inclined plates facing upwards and downwards,” Paper Presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, HEFAT 2008, South Africa, 30 June–2 July 2008. http://hdl.handle.net/2263/40445.
  • W. M. Kays, “Numerical solution for laminar-flow heat transfer in circular tube,” Trans. ASME, vol. 77, no. 8, pp. 1265–1272, 1955. DOI: 10.1115/1.4014661.
  • N. Masoumi, N. Sohrabi and A. Behzadmehr, “A new model for calculating the effective viscosity of nanofluids,” J. Phys. D: Appl. Phys., vol. 42, no. 5, pp. 55501, 2009. DOI: 10.1088/0022-3727/42/5/055501.
  • M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy. Convers. Manag., vol. 52, no. 1, pp. 789–793, 2011. DOI: 10.1016/j.enconman.2010.06.072.
  • Y. M. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf., vol. 11, no. 2, pp. 151–170, 1998. DOI: 10.1080/08916159808946559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.