221
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Jet Impingement Boiling on Monocrystalline Silicon Surfaces with Open Microchannels

, , &
Pages 1554-1562 | Received 06 May 2022, Accepted 16 May 2022, Published online: 12 Nov 2022

References

  • K. M. Burzynski et al., “Graphite nanocomposite substrates for improved performance of flexible, high-power AlGaN/GaN electronic devices,” ACS Appl. Electron. Mater., vol. 3, no. 3, pp. 1228–1235, 2021. DOI: 10.1021/acsaelm.0c01063.
  • R. Nimmagadda, R. Reuven, L. G. Asirvatham, and S. Wongwises, “Thermal management of electronic devices using gold and carbon nanofluids in a lid-driven square cavity under the effect of variety of magnetic fields,” IEEE Trans. Compon. Packag. Manufact. Technol., vol. 10, no. 11, pp. 1868–1878, 2020. DOI: 10.1109/TCPMT.2020.3008786.
  • D. D. Ma et al., “Experimental investigation of flow boiling heat transfer performance in zigzag microchannel heat sink for electronic cooling devices,” Int. J. Therm. Sci., vol. 145, p. 106003, Nov. 2019. DOI: 10.1016/j.ijthermalsci.2019.106003.
  • S. M. Hosseini, “Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green-Naghdi theory,” Appl. Math. Model., vol. 57, pp. 21–36, 2018. DOI: 10.1016/j.apm.2017.12.034.
  • L. Chen, F. Meng, and F. Sun, “Thermodynamic analyses and optimization for thermoelectric devices: the state of the arts,” Sci. China Technol. Sci., vol. 59, no. 3, pp. 442–455, 2016. DOI: 10.1007/s11431-015-5970-5.
  • C. Wang, Y. Song, and P. Jiang, “Modelling of liquid nitrogen spray cooling in an electronic equipment cabin under low pressure,” Appl. Therm. Eng., vol. 136, pp. 319–326, 2018. DOI: 10.1016/j.applthermaleng.2018.02.095.
  • A. Baïri, N. Alilat, and F. D. Quintana, “Experimental study of free convective heat transfer around a spherical electronic component cooled by means of porous media saturated by nanofluid,” Heat Mass Transf., vol. 56, no. 11, pp. 3085–3092, 2020. DOI: 10.1007/s00231-020-02908-8.
  • R. Monti, R. Barboni, P. Gasbarri, and L. D. Chiwiacowsky, “Optimisation and thermal control of a multi-layered structure for space electronic devices and thermal shielding of re-entry vehicles,” Acta Astronaut., vol. 75, no. 6, pp. 42–50, 2012. DOI: 10.1016/j.actaastro.2012.01.006.
  • S. S. Murshed and C. N. De Castro, “A critical review of traditional and emerging techniques and fluids for electronics cooling,” Renew. Sustain. Energy Rev., vol. 78, pp. 821–833, Oct. 2017. DOI: 10.1016/j.rser.2017.04.112.
  • X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci., vol. 56, pp. 1–32, 2016. DOI: 10.1016/j.pecs.2016.05.003.
  • Z. M. Wan, M. Chen, W. Liu, and J. Liu, “Research on porous micro heat sink for thermal management of high-power LED,” J. Mech. Eng., vol. 46, no. 8, pp. 109–113, 2010. DOI: 10.3901/JME.2010.08.109.
  • J. Wei, “Challenges in cooling design of CPU packages for high-performance servers,” Heat Transf. Eng., vol. 29, no. 2, pp. 178–187, 2008. DOI: 10.1080/01457630701686727.
  • K. C. Ng, C. R. Yap, and M. A. Chan, “A universal performance chart for CPU cooling devices,” Heat Transf. Eng., vol. 29, no. 7, pp. 651–656, 2008. DOI: 10.1080/01457630801922618.
  • I. Mihai, C. Pîrghie, and V. Zegrean, “Research regarding heat exchange through nanometric polysynthetic thermal compound to cooler–CPU interface,” Heat Transf. Eng., vol. 31, no. 1, pp. 90–97, 2010. DOI: 10.1080/01457630902976000.
  • Y. Zhang et al., “Realization of DC/DC high power and large current combined power supply for airborne radar,” J. Eng., vol. 2019, no. 16, pp. 1930–1933, 2019. DOI: 10.1049/joe.2018.8743.
  • G. N. Ahn et al., “A numbering-up metal microreactor for the high-throughput production of a commercial drug by copper catalysis,” Lab Chip, vol. 19, no. 20, pp. 3535–3542, 2019. DOI: 10.1039/C9LC00764D.
  • C. Agarwal, R. Kumar, A. Gupta, and B. Chatterjee, “Maximum surface heat flux during jet impingement quenching of vertical hot surface,” J. Enhanc. Heat Transf., vol. 22, no. 3, pp. 199–219, 2015. DOI: 10.1615/JEnhHeatTransf.2015014094.
  • Y. Zhang, J. Wei, and D. Guo, “Enhancement of flow-jet combined boiling heat transfer of FC-72 over micro-pin-finned surfaces,” J. Enhanc. Heat Transf., vol. 19, no. 6, pp. 489–503, 2012. DOI: 10.1615/JEnhHeatTransf.2012005999.
  • B. Weigand and S. Spring, “Multiple jet impingement—a review,” Heat Transf. Res., vol. 42, no. 2, pp. 101–142, 2011. DOI: 10.1615/HeatTransRes.v42.i2.30.
  • G. A. Dreitser, V. P. Firsov, I. V. Antyukhov, and D. A. Morozov, “The interaction of a liquid nitrogen jet with a surface in boiling,” Heat Transf. Res., vol. 32, no. 1-3, pp. 7, 2001. DOI: 10.1615/HeatTransRes.v32.i1-3.120.
  • S. Fan and F. Duan, “A review of two-phase submerged boiling in thermal management of electronic cooling,” Int. J. Heat Mass Transf., vol. 150, p. 119324, Apr. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119324.
  • V. S. Devahdhanush and I. Mudawar, “Critical heat flux of confined round single jet and jet array impingement boiling,” Int. J. Heat Mass Transf., vol. 169, p. 120857, Apr. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120857.
  • V. S. Devahdhanush and I. Mudawar, “Review of critical heat flux (CHF) in jet impingement boiling,” Int. J. Heat Mass Transf., vol. 169, p. 120893, Apr. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120893.
  • S. G. Kandlikar, T. Widger, A. Kalani, and V. Mejia, “Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds,” J. Heat Transf., vol. 135, no. 6, pp. 1123–1134, 2013. DOI: 10.1115/1.4023574.
  • A. Kalani and S. G. Kandlikar, “Evaluation of pressure drop performance during enhanced flow boiling in open microchannels with tapered manifolds,” J. Heat Transf., vol. 136, no. 5, p. 051502, May 2014. DOI: 10.1115/1.4026306.
  • A. Kalani and S. G. Kandlikar, “Flow patterns and heat transfer mechanisms during flow boiling over open microchannels in tapered manifold (OMM),” Int. J. Heat Mass Transf., vol. 89, pp. 494–504, Oct. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.070.
  • A. Kalani and S. G. Kandlikar, “Effect of taper on pressure recovery during flow boiling in open microchannels with manifold using homogeneous flow model,” Int. J. Heat Mass Transf., vol. 83, pp. 109–117, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.080.
  • P. Buchling and S. Kandlikar, “Enhanced flow boiling of ethanol in open microchannels with tapered manifolds in a gravity-driven flow,” J. Heat Transf., vol. 138, no. 3, p. 031503, Mar. 2016. DOI: 10.1115/1.4031884.
  • Y. Zhang, J. Wei, X. Kong, and L. Guo, “Confined submerged jet impingement boiling of subcooled FC-72 over micro-pin-finned surfaces,” Heat Transf. Eng., vol. 37, no. 3–4, pp. 269–278, 2016. DOI: 10.1080/01457632.2015.1052661.
  • R. H. Pereira, E. P. B. Filho, S. L. Braga, and J. A. R. Parise, “Nucleate boiling in large arrays of impinging water sprays,” Heat Transf. Eng., vol. 34, no. 5–6, pp. 479–491, 2013. DOI: 10.1080/01457632.2012.722443.
  • W. Timm, K. Weinzierl, and A. Leipertz, “Heat transfer in subcooled jet impingement boiling at high wall temperatures,” Int. J. Heat Mass Transf., vol. 46, no. 8, pp. 1385–1393, 2003. DOI: 10.1016/S0017-9310(02)00416-7.
  • S. G. Lee, M. Kaviany, C. J. Kim, and J. Lee, “Quasi-steady front in quench subcooled-jet impingement boiling: experiment and analysis,” Int. J. Heat Mass Transf., vol. 113, pp. 622–634, Oct. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.081.
  • M. Schultz et al., “Embedded two-phase cooling of large three-dimensional compatible chips with radial channels,” J. Electron. Packag., vol. 138, no. 2, p. 021005, Jun. 2016. DOI: 10.1115/1.4033309.
  • A. Sridhar, C. L. Ong, S. Paredes, B. Michel, and K. E. Goodson, “Thermal design of a hierarchical radially expanding cavity for two-phase cooling of integrated circuits,” presented at the ASME 2015 International Technical Conference and Exhibition, 2015. DOI: 10.1115/IPACK2015-48690.
  • B. Shen et al., “Bubble activation from a hydrophobic spot at ‘negative’ surface superheats in subcooled boiling,” Appl. Therm. Eng., vol. 88, pp. 230–236, Sep. 2015. DOI: 10.1016/j.applthermaleng.2014.10.054.
  • H. J. Jo, H. S. Ahn, S. H. Kang, and M. H. Kim, “A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,” Int. J. Heat Mass Transf., vol. 54, no. 25–26, pp. 5643–5652, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.001.
  • C. H. Choi et al., “Large-scale generation of patterned bubble arrays on printed bi-functional boiling surfaces,” Sci. Rep., vol. 6, p. 23760, Apr. 2016. DOI: 10.1038/srep23760.
  • M. Yamada et al., “Enhancement of boiling heat transfer under sub-atmospheric pressures using biphilic surfaces,” Int. J. Heat Mass Transf., vol. 115, pp. 753–762, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.078.
  • T. Liu, P. Li, C. Liu, and C. Gau, “Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface,” Int. J. Heat Mass Transf., vol. 54, no. 1–3, pp. 126–134, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.060.
  • M. D. Clark, J. A. Weibel, and S. V. Garimella, “Identification of nucleate boiling as the dominant heat transfer mechanism during confined two-phase jet impingement,” Int. J. Heat Mass Transf., vol. 128, pp. 1095–1101, Jan. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.058.
  • W. Zheng et al., “Subcooled jet impingement boiling enhanced by porous surface with micro-column array,” J. Enhanc. Heat Transf., vol. 28, no. 5, pp. 1–17, 2021. DOI: 10.1615/JEnhHeatTransf.2021037565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.