206
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical Simulation of Mixing Characteristics in a Split-and-Recombine Microchannel

, , &

References

  • J. R. Bourne, “Mixing and the selectivity of chemical reactions,” Org. Process Res. Dev., vol. 7, no. 4, pp. 471–508, 2003. DOI: 10.1021/op020074q.
  • M. Nverdi, K. Hasan, and Y. Mehmet-Senan, “Enhancement of heat transfer with mini channels in shell and tube heat exchangers: Experimental performance under optimal conditions,” Heat Transfer Res., vol. 52, no. 13, pp. 73–93, 2021. DOI: 10.1615/HeatTransRes.2021037788.
  • N. K. Gupta, S. K. Verma, P. K. S. Rathore, and A. Sharma, “Effects of CuO/H2O nanofluid application on thermal performance of mesh wick heat pipe,” Heat Trans Res., vol. 51, no. 9, pp. 837–850, 2020. DOI: 10.1615/HeatTransRes.2020030772.
  • Z. Liu, Y. Lu, J. Wang, and G. Luo, “Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer: Experiment and CFD simulation,” Chem. Engin. J., vol. 181–182, pp. 597–606, Feb. 2012. DOI: 10.1016/j.cej.2011.11.105.
  • N. Kockmann, “Transport phenomena and chemical reactions in modular microstructured devices,” Heat Transfer Engin., vol. 38, no. 14–15, pp. 1316–1330, 2017. DOI: 10.1080/01457632.2016.1242966.
  • B. K. Johnson and R. K. Prud’homme, “Chemical processing and micromixing in confined impinging jets,” AIChE J., vol. 49, no. 9, pp. 2264–2282, 2003. DOI: 10.1002/aic.690490905.
  • W. Li, et al., “Numerical and experimental investigations of micromixing performance and efficiency in a pore-array intensified tube-in-tube microchannel reactor,” Chem. Engin. J., vol. 370, pp. 1350–1365, Aug. 2019. DOI: 10.1016/j.cej.2019.03.189.
  • D. Bothe, C. Stemich, and H.-J. Warnecke, “Computation of scales and quality of mixing in a T-shaped microreactor,” Computers and Chem. Engin., vol. 32, no. 1–2, pp. 108–114, Jan. 2008. DOI: 10.1016/j.compchemeng.2007.08.001.
  • C.-Y. Lee and L.-M. Fu, “Recent advances and applications of micromixers,” Sensors Actuators B: Chem., vol. 259, pp. 677–702, Apr. 2018. DOI: 10.1016/j.snb.2017.12.034.
  • C. G. Fernández, et al., “Continuous-flow separation of magnetic particles from biofluids: How does the microdevice geometry determine the separation performance?,” Sensors, vol. 20, no. 11, pp. 3030, May 2020. DOI: 10.3390/s20113030.
  • Y. Muranaka, et al., “5-Hydroxymethylfurfural synthesis from monosaccharides by a biphasic reaction–extraction system using a microreactor and extractor,” ACS Omega, vol. 5, no. 16, pp. 9384–9390, Apr. 2020. DOI: 10.1021/acsomega.0c00399.
  • G. Grisanti, et al., “A microfluidic platform for cavitation-enhanced drug delivery,” Micromachines, vol. 12, no. 6, pp. 658, Jun. 2021. DOI: 10.3390/mi12060658.
  • V. K. Bodla, R. Seerup, U. Krühne, J. M. Woodley, and K. V. Gernaey, “Microreactors and CFD as tools for biocatalysis reactor design: A case study,” Chem. Eng. Technol., vol. 36, no. 6, pp. 1017–1026, Jun. 2013. DOI: 10.1002/ceat.201200667.
  • T. Illg, P. Löb, and V. Hessel, “Flow chemistry using milli- and microstructured reactors—From conventional to novel process windows,” Bioorg. Med. Chem., vol. 18, no. 11, pp. 3707–3719, Jun. 2010. DOI: 10.1016/j.bmc.2010.03.073.
  • H. Ding, et al., “Mixing mechanism of a straight channel micromixer based on light-actuated oscillating electroosmosis in low-frequency sinusoidal AC electric field,” Microfluid Nanofluid, vol. 25, pp. 26, Feb. 2021. DOI: 10.1007/s10404-021-02430-1.
  • A. B. Banaga, et al., “Micromixing performance in a rotating bar reactor,” Can. J. Chem. Eng., vol. 98, no. 8, pp. 1776–1783, Aug. 2020. DOI: 10.1002/cjce.23741.
  • D. Nouri, A. Zabihi-Hesari, and M. Passandideh-Fard, “Rapid mixing in micromixers using magnetic field,” Sensors Actuators A: Phys., vol. 255, pp. 79–86, Mar. 2017. DOI: 10.1016/j.sna.2017.01.005.
  • S. K. Mehta, S. Pati, and P. K. Mondal, “Numerical study of the vortex-induced electroosmotic mixing of non-Newtonian biofluids in a nonuniformly charged wavy microchannel: Effect of finite ion size,” Electrophoresis, vol. 42, no. 23, pp. 2498–2510, Dec. 2021. DOI: 10.1002/elps.202000225.
  • P. Plouffe, A. Macchi, and A. A. Donaldson, “Enhancement of interphase transport in mini-/microscale applications using passive mixing,” Heat Transfer Engin., vol. 34, no. 2–3, pp. 159–168, 2013. DOI: 10.1080/01457632.2013.703476.
  • M.-Y. Kuo, C.-Y. Wu, K.-C. Hsu, C.-Y. Chang, and W. Jiang, “Numerical investigation of high-Peclet-number mixing in periodically curved microchannel with strong curvature,” Heat Transfer Engin., vol. 40, no. 20, pp. 1736–1749, 2019. DOI: 10.1080/01457632.2018.1497120.
  • S. Dreher, N. Kockmann, and P. Woias, “Characterization of laminar transient flow regimes and mixing in T-shaped micromixers,” Heat Transfer Engin., vol. 30, no. 1–2, pp. 91–100, 2009. DOI: 10.1080/01457630802293480.
  • C. Nonino, S. Savino, and S. Del Giudice, “Numerical assessment of the mixing performance of different serpentine microchannels,” Heat Transfer Engin., vol. 30, no. 1–2, pp. 101–112, 2009. DOI: 10.1080/01457630802293506.
  • A. G. Kanaris, I. A. Stogiannis, A. A. Mouza, and S. G. Kandlikar, “Comparing the mixing performance of common types of chaotic micromixers: A numerical study,” Heat Transfer Engin., vol. 36, no. 13, pp. 1122–1131, 2015. DOI: 10.1080/01457632.2015.987623.
  • N. Kockmann, S. Karlen, C. Girard, and D. M. Roberge, “Liquid-liquid test reactions to characterize two-phase mixing in microchannels,” Heat Transfer Engin., vol. 34, no. 2–3, pp. 169–177, 2013. DOI: 10.1080/01457632.2013.703508.
  • N. Kockmann, T. Kiefer, M. Engler, and P. Woias, “Convective mixing and chemical reactions in microchannels with high flow rates,” Sensors Actuators B: Chemical, vol. 117, no. 2, pp. 495–508, Oct. 2006. DOI: 10.1016/j.snb.2006.01.004.
  • D. Bothe, C. Stemich, and H.-J. Warnecke, “Fluid mixing in a T-shaped micro-mixer,” Chem. Engin. Sci., vol. 61, no. 9, pp. 2950–2958, May 2006. DOI: 10.1016/j.ces.2005.10.060.
  • S.-S. Hsieh, J.-W. Lin, and J.-H. Chen, “Mixing efficiency of Y-type micromixers with different angles,” Int. J. Heat Fluid Flow, vol. 44, pp. 130–139, Dec. 2013. DOI: 10.1016/j.ijheatfluidflow.2013.05.011.
  • X. Zhan, G. Chen. Guangsheng, and D. Jing, “Optimal analysis of the hydraulic and mixing performances of symmetric T-shaped rectangular microchannel mixer,” Fractals, vol. 29, no. 2, pp. 2150042, Mar. 2021. DOI: 10.1142/S0218348X21500420.
  • R. Rabani, S. Talebi, and M. Rabani, “Numerical analysis of lamination effect in a vortex micro T-mixer with non-aligned inputs,” Heat Mass Transfer, vol. 52, no. 3, pp. 611–619, 2016. DOI: 10.1007/s00231-015-1584-5.
  • M. A. Ansari, K.-Y. Kim, K. Anwar, and S. M. Kim, “Vortex micro T-mixer with non-aligned inputs,” Chem. Engin. J., vol. 181–182, pp. 846–850, Feb. 2012. DOI: 10.1016/j.cej.2011.11.113.
  • S. Hossain and K.-Y. Kim, “Mixing performance of a serpentine micromixer with non-aligned inputs,” Micromachines, vol. 6, no. 7, pp. 842–854, 2015. DOI: 10.3390/mi6070842.
  • P. Borgohain, J. Arumughan, A. Dalal and G. Natarajan, “Design and performance of a three-dimensional micromixer with curved ribs,” Chem. Engin. Res. Design, vol. 136, pp. 761–775, Aug. 2018. DOI: 10.1016/j.cherd.2018.06.027.
  • P. Zhang, et al., “Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels,” Chem. Engin. Sci., vol. 182, pp. 17–27, Jun. 2018. DOI: 10.1016/j.ces.2018.02.018.
  • W. Duangthongsuk and S. Wongwises, “A comparison of the thermal and hydraulic performances between miniature pin fin heat sink and microchannel heat sink with zigzag flow channel together with using nanofluids,” Heat Mass Transfer, vol. 54, no. 11, pp. 3265–3274, May 2018. DOI: 10.1007/s00231-018-2370-y.
  • X. Chen and T. Li, “A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel,” Chem. Engin. J., vol. 313, pp. 1406–1414, Apr. 2017. DOI: 10.1016/j.cej.2016.11.052.
  • E. Tripathi, P. K. Patowari, and S. Pati, “Comparative assessment of mixing characteristics and pressure drop in spiral and serpentine micromixers,” Chem. Engin. Processing - Process Intensification, vol. 162, pp. 108335, May 2021. DOI: 10.1016/j.cep.2021.108335.
  • E. Tripathi, P. K. Patowari, and S. Pati, “Numerical investigation of mixing performance in spiral micromixers based on Dean flows and chaotic advection,” Chem. Engin. Processing - Process Intensification, vol. 169, pp. 108609, Dec. 2021. DOI: 10.1016/j.cep.2021.108609.
  • K. Cheng, C. Liu, T. Guo, and L. Wen, “CFD and experimental investigations on the micromixing performance of single countercurrent-flow microchannel reactor,” Chinese J. Chem. Engin., vol. 27, no. 5, pp. 1079–1088, May 2019. DOI: 10.1016/j.cjche.2018.11.026.
  • D. Jing and X. Zhan, “Numerical studies on the hydraulic and mixing performances of fluid flow around a cylinder in microchannel with vertical flexible flag,” Chem. Engin. J., vol. 430, pp. 133009, Feb. 2022. DOI: 10.1016/j.cej.2021.133009.
  • N. Sen, K. K. Singh, S. Mukhopadhyay, and K. T. Shenoy, “Continuous synthesis of tributyl phosphate in microreactor,” Progress Nucl. Energy, vol. 126, pp. 103402, Aug. 2020. DOI: 10.1016/j.pnucene.2020.103402.
  • K. Bawornruttanaboonya, S. Devahastin, A. S. Mujumdar, and N. Laosiripojana, “Comparative numerical evaluation of autothermal biogas reforming in conventional and split-and-recombine microreactors,” Int. J. Hydrogen Energy, vol. 43, no. 51, pp. 22874–22884, Dec. 2018. DOI: 10.1016/j.ijhydene.2018.10.140.
  • T. S. Sheu, S. J. Chen, and J. J. Chen, “Mixing of a split and recombine micromixer with tapered curved microchannels,” Chem. Engin. Sci., vol. 71, pp. 321–332, Mar. 2012. DOI: 10.1016/j.ces.2011.12.042.
  • M. Shaker, et al., “Numerical investigation of laminar mass transport enhancement in heterogeneous gaseous microreactors,” Chem. Engin. Processing: Process Intensification, vol. 54, pp. 1–11, Apr. 2012. DOI: 10.1016/j.cep.2012.02.001.
  • A. B. Shinde, A. V. Patil, and V. B. Patil, “Enhance the mixing performance of water and ethanol at micro level using geometrical modifications,” Mater. Today: Proceedings, vol. 46, no. 11–12, pp. 460–470, 2021. DOI: 10.1016/j.matpr.2020.10.265.
  • R. R. Gidde, “On the computational analysis of short mixing length planar split and recombine micromixers for microfluidic applications,” Int. J. Environ. Anal. Chem., vol. 101, no. 1, pp. 79–94, 2021. DOI: 10.1080/03067319.2019.1660875.
  • M. S. C. A. Brito, R. J. Santos, M. M. Dias, J. C. B. Lopes, and C. P. Fonte, “Striation thickness distribution in split-and-recombine mixers in the stokes regime,” Chem. Engin. Process. - Process Intensification, vol. 170, pp. 108714, Jan. 2022. DOI: 10.1016/j.cep.2021.108714.
  • T. Al-Hassan, C. Habchi, T. Lemenand, and F. Azizi, “CFD simulation of creeping flows in a novel split-and-recombine multifunctional reactor,” Chem. Engin. Process. Process Intensification, vol. 162, pp. 108353, May 2021. DOI: 10.1016/j.cep.2021.108353.
  • C. Zheng, et al., “Numerical simulation and experimental investigation of gas-liquid two-phase flow in a complex microchannel,” Chem. Engin. Sci., vol. 230, pp. 116198, Feb. 2021. DOI: 10.1016/j.ces.2020.116198.
  • A. Hashmi and J. Xu, “On the quantification of mixing in microfluidics,” J. Lab Autom., vol. 19, no. 5, pp. 488–491, 2014. DOI: 10.1177/2211068214540156.
  • M. U. Javaid, T. A. Cheema, and C. W. Park, “Analysis of passive mixing in a serpentine microchannel with sinusoidal side walls,” Micromachines, vol. 9, no. 1, pp. 8, 2017. DOI: 10.3390/mi9010008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.