1,305
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Performance Analysis of Heat Exchangers and Integrated Supercritical CO2 Brayton Cycle for Varying Heat Carrier, Cooling and Working Fluid Flow Rates

ORCID Icon &

References

  • Y. Ahn, et al., “Review of supercritical CO2 power cycle technology and current status of research and development,” Nucl. Eng. Technol., vol. 47, no. 6, pp. 647–661, 2015. DOI: 10.1016/j.net.2015.06.009.
  • M. T. White, G. Bianchi, L. Chai, S. A. Tassou, and A. I. Sayma, “Review of supercritical CO2 technologies and systems for power generation,” Appl. Therm. Eng., vol. 185, pp. 116447, Feb. 2021. DOI: 10.1016/j.applthermaleng.2020.116447.
  • L. Cheng, G. Xia, and Q. Li, “CO2 evaporation process modeling: fundamentals and engineering applications,” Heat Transf. Eng., vol. 43, no. 8–10, pp. 658–678, 2022. DOI: 10.1080/01457632.2021.1905297.
  • S. A. Wright, T. M. Conboy, E. J. Parma, T. G. Lewis, and A. J. Suo-Anttila, “Summary of the sandia supercritical CO2 development program,” Sandia National Lab, Albuquerque, NM, USA, Rep. SAND2011-3375C, 2011.
  • J. Pasch, M. Carlson, D. Fleming, and G. Rochau, “Evaluation of recent data from the Sandia National Laboratories closed Brayton cycle testing,” Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, Jun. 13–17, 2016. DOI: 10.1115/GT2016-57620.
  • L. Chordia, M. A. Portnoff, and E. Green, “High temperature heat exchanger design and fabrication for systems with large pressure differentials,” Thar Energy, LLC, Pittsburgh, PA, USA, Rep. DE-FE00024012, 2017.
  • W. M. Kays, Compact Heat Exchangers– Guidance for Engineers. WS Atkins Consultants Ltd, Surrey, UK, 2000.
  • L. Chai and S. A. Tassou, “A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles,” Therm. Sci. Eng. Prog., vol. 18, pp. 100543, Apr. 2020. DOI: 10.1016/j.tsep.2020.100543.
  • J. Guo, “Design analysis of supercritical carbon dioxide recuperator,” Appl. Energy, vol. 164, pp. 21–27, Feb. 2016. DOI: 10.1016/j.apenergy.2015.11.049.
  • J. Guo and X. Huai, “Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide,” ASME J. Heat Transf., vol. 139, no. 6, pp. 061801, 2017. DOI: 10.1115/1.4035603.
  • L. Chai and S. A. Tassou, “Numerical study of the thermohydraulic performance of printed circuit heat exchangers for supercritical CO2 Brayton cycle application,” Energy Procedia, vol. 161, pp. 480–488, Mar. 2019. DOI: 10.1016/j.egypro.2019.02.066.
  • K. Nikitin, Y. Kato, and L. Ngo, “Printed circuit heat exchanger thermal–hydraulic performance in supercritical CO2 experimental loop,” Int. J. Refrig., vol. 29, no. 5, pp. 807–814, 2006. DOI: 10.1016/j.ijrefrig.2005.11.005.
  • T. L. Ngo, Y. Kato, K. Nikitin, and T. Ishizuka, “Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles,” Exp. Therm. Fluid Sci., vol. 32, no. 2, pp. 560–570, 2007. DOI: 10.1016/j.expthermflusci.2007.06.006.
  • D. E. Kim, M. H. Kim, J. E. Cha, and S. O. Kim, “Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model,” Nucl. Eng. Des., vol. 238, no. 12, pp. 3269–3276, 2008. DOI: 10.1016/j.nucengdes.2008.08.002.
  • W. Chu, X. Li, Y. Chen, Q. Wang, and T. Ma, “Experimental study on small scale printed circuit heat exchanger with zigzag channels,” Heat Transf. Eng., vol. 42, no. 9, pp. 723–735, 2021. DOI: 10.1080/01457632.2020.1735779.
  • S. M. Lee and K. Y. Kim, “A parametric study of the thermal-hydraulic performance of a zigzag printed circuit heat exchanger,” Heat Transfer Eng., vol. 35, no. 13, pp. 1192–1200, 2014. DOI: 10.1080/01457632.2013.870004.
  • S. G. Kim, Y. Lee, Y. Ahn, and J. I. Lee, “CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application,” Ann. Nucl. Energy, vol. 92, pp. 175–185, Jun. 2016. DOI: 10.1016/j.anucene.2016.01.019.
  • S. Y. Lee, B. G. Park, and J. T. Chung, “Numerical studies on thermal hydraulic performance of zigzag-type printed circuit heat exchanger with inserted straight channels,” Appl. Therm. Eng., vol. 123, pp. 1434–1443, Aug. 2017. DOI: 10.1016/j.applthermaleng.2017.05.198.
  • A. Meshram, et al., “Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications,” Appl. Therm. Eng., vol. 109, pp. 861–870, Oct. 2016. DOI: 10.1016/j.applthermaleng.2016.05.033.
  • J. S. Kwon, S. Son, J. Y. Heo, and J. I. Lee, “Compact heat exchangers for supercritical CO2 power cycle application,” Energ. Convers. Manage, vol. 209, pp. 112666, Apr. 2020. DOI: 10.1016/j.enconman.2020.112666.
  • L. Chai and S. A. Tassou, “Modelling and evaluation of the thermohydraulic performance of compact recuperative heat exchangers in supercritical carbon dioxide waste heat to power conversion systems,” Heat Transf. Eng., vol. 43, no. 13, pp. 1067–1082, 2022. DOI: 10.1080/01457632.2021.1943833.
  • S. S. Pitla, E. A. Groll, and S. Ramadhyani, “New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2,” Int. J. Refrig., vol. 25, no. 7, pp. 887–895, 2002. DOI: 10.1016/S0140-7007(01)00098-6.
  • C. Dang and E. Hihara, “In-tube cooling heat transfer of supercritical carbon dioxide. Part 2. Comparison of numerical calculation with different turbulence models,” Int. J. Refrig., vol. 27, no. 7, pp. 748–760, 2004. DOI: 10.1016/j.ijrefrig.2004.04.017.
  • A. Kruizenga, et al., “Heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries,” J. Therm. Sci. Eng. Appl., vol. 3, no. 3, pp. 8, 2011. Article no. 031002. DOI: 10.1115/1.4004252.
  • A. Kruizenga, H. Li, M. Anderson, and M. Corradini, “Supercritical carbon dioxide heat transfer in horizontal semicircular channels,” ASME J. Heat Transf., vol. 134, no. 8, pp. 081802, 2012. DOI: 10.1115/1.4006108.
  • H. Li, et al., “Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures,” Int. J. Therm. Sci., vol. 50, no. 12, pp. 2430–2442, 2011. DOI: 10.1016/j.ijthermalsci.2011.07.004.
  • S. He, W. S. Kim, P. X. Jiang, and J. D. Jackson, “Simulation of mixed convection heat transfer to carbon dioxide at supercritical pressure,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 218, no. 11, pp. 1281–1296, 2004. DOI: 10.1177/095440620421801101.
  • S. He, et al., “A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical mini tube,” Int. J. Therm. Sci., vol. 44, no. 6, pp. 521–530, 2005. DOI: 10.1016/j.ijthermalsci.2004.11.003.
  • L. Cheng, G. Ribatski, and J. R. Thome, “Analysis of supercritical CO2 cooling in macro-and micro-channels,” Int. J. Refrig., vol. 31, no. 8, pp. 1301–1316, 2008. DOI: 10.1016/j.ijrefrig.2008.01.010.
  • P. X. Jiang, Y. Zhang, Y. J. Xu, and R. F. Shi, “Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers,” Int. J. Therm. Sci., vol. 47, no. 8, pp. 998–1011, 2008. DOI: 10.1016/j.ijthermalsci.2007.08.003.
  • P. Jiang, Y. Zhang, and R. Shi, “Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube,” Int. J. Heat Mass Transf., vol. 51, no. 11–12, pp. 3052–3056, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.09.008.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. USA: Pearson Education, 2007.
  • M. Marchionni, L. Chai, G. Bianchi, and S. A. Tassou, “Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems,” Appl. Therm. Eng., vol. 161, pp. 114190, Oct. 2019. DOI: 10.1016/j.applthermaleng.2019.114190.
  • Y. Jiang, E. Liese, S. E. Zitney, and D. Bhattacharyya, “Design and dynamic modelling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles,” Appl. Energy, vol. 231, pp. 1019–1032, Dec. 2018. DOI: 10.1016/j.apenergy.2018.09.193.
  • L. Chai and S. A. Tassou, “Modelling and performance analysis of heat exchangers for supercritical CO2 power systems,” Presented at the 5th Sustainable Thermal Energy Management International Conference, Hangzhou, China, May 14–16, 2019.
  • K. Brun, P. Friedman, and R. Dennis, Fundamentals, and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles. Cambridge, UK: Woodhead Publishing, 2017.
  • J. Dyreby, S. Klein, and G. Nellis, “Design considerations for supercritical carbon dioxide Brayton cycles with recompression,” J. Eng. Gas Turb. Power, vol. 136, no. 10, pp. 101701, 2014. DOI: 10.1115/1.4027936.
  • J. Yang, A. Jacobi, and W. Liu, “Heat transfer correlations for single-phase flow in plate heat exchangers based on experimental data,” Appl. Therm. Eng., vol. 113, pp. 1547–1557, Feb. 2017. DOI: 10.1016/j.applthermaleng.2016.10.147.
  • A. L. London and R. A. Seban, “A generalization of the methods of heat exchanger analysis,” Int. J. Heat Mass Transfer, vol. 23, no. 1, pp. 5–16, 1980. DOI: 10.1016/0017-9310(80)90133-7.
  • V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, no. 2, pp. 359–368, 1976.
  • A. Žukauskas, “Heat transfer from tubes in crossflow,” Adv. Heat Transfer, vol. 8, pp. 93–160, 1972. DOI: 10.1016/S0065-2717(08)70038-8.
  • A. S. Wanniarachchi, U. Ratnam, B. E. Tilton, and K. Dutta-Roy, “Approximate correlations for chevron-type plate heat exchangers,” Presented at the 1995 National Heat Transfer Conference, Portland, USA, Aug. 5–9, 1995.
  • E. A. Krasnoshchekov and V. S. Protopopov, “About heat transfer in flow of carbon dioxide and water at supercritical region of state parameters,” Therm. Eng., vol. 10, pp. 94, 1960.