200
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Nanofluid and Electrostatic Disjoining Pressure on Heat Transfer from an Evaporating Meniscus

ORCID Icon, & ORCID Icon

References

  • D. Mikaelian, B. Haut and P. Colinet, “Lubrication-type analysis of thermohydraulic transport in a model grooved heat pipe,” Heat Mass Transfer, vol. 50, no. 3, pp. 415–425, Mar. 2014. DOI: 10.1007/s00231-014-1297-1.
  • M. Ghajar and J. Darabi, “Evaporative heat transfer analysis of a micro loop heat pipe with rectangular grooves,” Int. J. Therm. Sci., vol. 79, pp. 51–59, May 2014. DOI: 10.1016/j.ijthermalsci.2013.12.014.
  • V. S. Jasvanth, A. Ambirajan, D. Kumar and J. H. Arakeri, “Effect of heat pipe figure of merit on an evaporating thin film,” J. Thermophys. Heat Transfer, vol. 27, no. 4, pp. 633–640, Oct. 2013. DOI: 10.2514/1.T3980.
  • C. Guo, X. Hu, W. Cao, D. Yu and D. Tang, “Effect of mechanical vibration on flow and heat transfer characteristics in rectangular microgrooves,” Appl. Therm. Eng., vol. 52, no. 2, pp. 385–393, Apr. 2013. DOI: 10.1016/j.applthermaleng.2012.12.010.
  • R. Mandel, A. Shooshtari and M. Ohadi, “Thin-film evaporation on microgrooved heatsinks,” Numer. Heat Transfer, Part A, vol. 71, no. 2, pp. 111–127, Jan. 2017. DOI: 10.1080/10407782.2016.1257300.
  • H. Wang, Z. Pan and Z. Chen, “Thin-liquid-film evaporation at contact line,” Front. Energy Power Eng. China, vol. 3, no. 2, pp. 141–151, Jun. 2009. DOI: 10.1007/s11708-009-0020-2.
  • C. Sodtke, J. Kern, N. Schweizer and P. Stephan, “High resolution measurements of wall temperature distribution underneath a single vapor bubble under low gravity conditions,” Int. J. Heat Mass Transfer, vol. 49, no. 5–6, pp. 1100–1106, Mar. 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.07.054.
  • J. J. Zhao, M. Huang, Q. Min, D. M. Christopher and Y. Y. Duan, “Near-wall liquid layering, velocity slip, and solid–liquid interfacial thermal resistance for thin-film evaporation in microchannels,” Nanoscale Microscale Thermophys. Eng., vol. 15, no. 2, pp. 105–122, Apr. 2011. DOI: 10.1080/15567265.2011.560927.
  • A. Mukherjee, “Contribution of thin-film evaporation during flow boiling inside microchannels,” Int. J. Therm. Sci., vol. 48, no. 11, pp. 2025–2035, Nov. 2009. DOI: 10.1016/j.ijthermalsci.2009.03.006.
  • J. Darabi, “An analytical model for EHD-enhanced microscale thin-film evaporation,” Heat Transfer Eng., vol. 25, no. 6, pp. 14–22, Sep. 2004. DOI: 10.1080/01457630490486094.
  • N. L. Forgia, M. Fernandino and C. A. Dorao, “Numerical simulation of evaporation process of two-phase flow in small-diameter channels,” Heat Transfer Eng., vol. 35, no. 5, pp. 440–451, Mar. 2014. DOI: 10.1080/01457632.2013.832596.
  • D. P. Ghosh, D. Sharma, D. Mohanty, S. K. Saha and R. Raj, “Facile fabrication of nanostructured microchannels for flow boiling heat transfer enhancement,” Heat Transfer Eng, vol. 40, no. 7, pp. 537–548, Apr. 2019. DOI: 10.1080/01457632.2018.1436399.
  • H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Amsterdam: Springer Netherlands, 2010.
  • National Research Council, NASA Space Technology Roadmaps and Priorities. Washington, DC: National Academies Press, 2012.
  • P. C. Wayner, “Fluid flow in the interline region of an evaporating non-zero contact angle meniscus,” Int. J. Heat Mass Transfer, vol. 16, no. 9, pp. 1777–1783, Sep. 1973. DOI: 10.1016/0017-9310(73)90167-1.
  • F. W. Holm and S. P. Goplen, “Heat transfer in the meniscus thin-film transition region,” J. Heat Transfer, vol. 101, no. 3, pp. 498–503, Aug. 1979. DOI: 10.1115/1.3451025.
  • P. Wayner, Jr. and C. Coccio, “Heat and mass transfer in the vicinity of the triple interline of a meniscus,” AIChE J., vol. 17, no. 3, pp. 569–574, May 1971. DOI: 10.1002/aic.690170317.
  • R. W. Schrage, A Theoretical Study of Interphase Mass Transfer. New York: Columbia University Press, 1953.
  • J. A. Schonberg and P. C. Wayner, “Analytical solution for the integral contact line evaporative heat sink,” J. Thermophys. Heat Transfer, vol. 6, no. 1, pp. 128–134, Jan1992. DOI: 10.2514/3.327.
  • J. M. Ha and G. P. Peterson, “The interline heat transfer of evaporating thin films along a microgrooved surface,” J. Heat Transfer, vol. 118, no. 3, pp. 747–755, Aug1996. DOI: 10.1115/1.2822695.
  • C. Yan and H. B. Ma, “Analytical solutions of heat transfer and film thickness in thin-film evaporation,” J. Heat Transfer, vol. 135, no. 3, pp. 031501, Mar. 2013. DOI: 10.1115/1.4007856.
  • S. Zhou, L. Zhou, X. Du and Y. Yang, “Heat transfer characteristics in an evaporating thin film and intrinsic meniscus in a binary fluid sessile droplet,” Heat Transfer Eng., vol. 40, no. 5–6, pp. 450–463, Apr. 2019. DOI: 10.1080/01457632.2018.1432043.
  • S. DasGupta, J. A. Schonberg and P. C. Wayner, “Investigation of an evaporating extended meniscus based on the augmented young-laplace equation,” J. Heat Transfer, vol. 115, no. 1, pp. 201–208, Feb. 1993. DOI: 10.1115/1.2910649.
  • H. H. Sait and H. B. Ma, “An experimental investigation of thin-film evaporation,” Nanoscale Microscale Thermophys. Eng., vol. 13, no. 4, pp. 218–227, Oct. 2009. DOI: 10.1080/15567260903276973.
  • A. Mehrizi and H. Wang, “Evaporating thin film profile near the contact line of a partially wetting water droplet under environmental heating,” Int. J. Heat Mass Transfer, vol. 107, pp. 1–5, Apr. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.041.
  • J. A. Schonberg, S. DasGupta and P. C. Wayner, “An augmented young-laplace model of an evaporating meniscus in a microchannel with high heat flux,” Exp. Therm. Fluid Sci., vol. 10, no. 2, pp. 163–170, Feb. 1995. DOI: 10.1016/0894-1777(94)00085-M.
  • H. Honda and O. Makishi, “Characteristics of an evaporating thin film of a highly wetting liquid in a groove,” Int. J. Heat Mass Transfer, vol. 79, pp. 829–837, Dec. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.044.
  • M. Bongarala, H. Hu, J. A. Weibel and S. V. Garimella, “A figure of merit to characterize the efficacy of evaporation from porous microstructured surfaces,” Int. J. Heat Mass Transfer, vol. 182, pp. 121964, Jan. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.121964.
  • B. V. Derjaguin, “Modern state of the investigation of long-range surface forces,” Langmuir, vol. 3, no. 5, pp. 601–606, Sep. 1987. DOI: 10.1021/la00077a001.
  • J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. London, UK: Academic Press, 1992,
  • P. C. Wayner, Y. Kao and L. LaCroix, “The interline heat-transfer coefficient of an evaporating wetting film,” Int. J. Heat Mass Transfer, vol. 19, no. 5, pp. 487–492, May 1976. DOI: 10.1016/0017-9310(76)90161-7.
  • S. Moosman and G. Homsy, “Evaporating menisci of wetting fluids,” J. Colloid Interface Sci, vol. 73, no. 1, pp. 212–223, Jan. 1980. DOI: 10.1016/0021-9797(80)90138-1.
  • X. Xu and V. Carey, “Film evaporation from a micro-grooved surface- an approximate heat transfer model and its comparison with experimental data,” J. Thermophys. Heat Transfer, vol. 4, no. 4, pp. 512–520, Oct. 1990. DOI: 10.2514/3.215.
  • M. Sujanani and P. C. Wayner, “Microcomputer-enhanced optical investigation of transport processes with phase change in near-equilibrium thin liquid films,” J. Colloid Interface Sci., vol. 143, no. 2, pp. 472–488, May 1991. DOI: 10.1016/0021-9797(91)90281-C.
  • P. C. Wayner, “The effect of interfacial mass transport on flow in thin liquid films,” Colloids Surfaces, vol. 52, pp. 71–84, Jan. 1991. DOI: 10.1016/0166-6622(91)80006-A.
  • L. W. Swanson and G. C. Herdt, “Model of the evaporating meniscus in a capillary tube,” J. Heat Transfer, vol. 114, no. 2, pp. 434–441, May 1992. DOI: 10.1115/1.2911292.
  • K. P. Hallinan, H. C. Chebaro, S. J. Kim and W. S. Chang, “Evaporation from an extended meniscus for nonisothermal interfacial conditions,” J. Thermophys. Heat Transfer, vol. 8, no. 4, pp. 709–716, Oct. 1994. DOI: 10.2514/3.602.
  • J. B. Freund, “The atomic detail of an evaporating meniscus,” Phys. Fluids, vol. 17, no. 2, pp. 22104, Feb. 2005. DOI: 10.1063/1.1843871.
  • M. Benselama, S. Harmand and K. Sefiane, “A perturbation method for solving the micro-region heat transfer problem,” Phys. Fluids, vol. 23, no. 10, pp. 102103, Oct. 2011. DOI: 10.1063/1.3643265.
  • J. J. Zhao, Y. Y. Duan, X. D. Wang and B. X. Wang, “Effects of superheat and temperature-dependent thermophysical properties on evaporating thin liquid films in microchannels,” Int. J. Heat Mass Transfer, vol. 54, no. 5–6, pp. 1259–1267, Feb. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.10.026.
  • E. Lim and Y. M. Hung, “Thermophysical phenomena of working fluids of thermocapillary convection in evaporating thin liquid films,” Int. Commun. Heat Mass Transfer, vol. 66, pp. 203–211, Aug. 2015. DOI: 10.1016/j.icheatmasstransfer.2015.06.006.
  • Z. H. Kou and M. L. Bai, “Effects of wall slip and temperature jump on heat and mass transfer characteristics of an evaporating thin film,” Int. Commun. Heat Mass Transfer, vol. 38, no. 7, pp. 874–878, Aug. 2011. DOI: 10.1016/j.icheatmasstransfer.2011.03.032.
  • Z. H. Kou, H. T. Lv, W. Zeng, M. L. Bai and J. Z. Lv, “Comparison of different analytical models for heat and mass transfer characteristics of an evaporating meniscus in a micro-channel,” Int. Commun. Heat Mass Transfer, vol. 63, pp. 49–53, Apr. 2015. DOI: 10.1016/j.icheatmasstransfer.2015.02.005.
  • B. Suman, “Effects of a surface-tension gradient on the performance of a micro-grooved heat pipe: an analytical study,” Microfluid Nanofluid, vol. 5, no. 5, pp. 655–667, Nov. 2008. DOI: 10.1007/s10404-008-0282-8.
  • R. Ranjan, J. Y. Murthy and S. V. Garimella, “Analysis of the wicking and thin-film evaporation characteristics of microstructures,” J. Heat Transfer, vol. 131, no. 10, pp. 11, Oct. 2009. DOI: 10.1115/1.3160538.
  • M. Ojha, A. Chatterjee, G. Dalakos, P. C. Wayner and J. L. Plawsky, “Role of solid surface structure on evaporative phase change from a completely wetting corner meniscus,” Phys. Fluids, vol. 22, no. 5, pp. 52101, May 2010. DOI: 10.1063/1.3392771.
  • P. K. Kundu, S. Chakraborty and S. DasGupta, “Experimental investigation of enhanced spreading and cooling from a microgrooved surface,” Microfluid Nanofluid, vol. 11, no. 4, pp. 489–499, Oct. 2011. DOI: 10.1007/s10404-011-0814-5.
  • G. A. Zoumpouli and S. G. Yiantsios, “Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions,” Phys. Fluids, vol. 28, no. 8, pp. 82108, Aug. 2016. DOI: 10.1063/1.4961303.
  • H. Hu and Y. Sun, “Effect of nanostructures on heat transfer coefficient of an evaporating meniscus,” Int. J. Heat Mass Transfer, vol. 101, pp. 878–885, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.092.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Presented at ASME International Mechanical Engineering Congress and Exposition, 1995. San Francisco, CA, Nov. 12.
  • P. K. Singh, P. V. Harikrishna, T. Sundararajan and S. K. Das, “Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel,” J. Heat Transfer, vol. 133, no. 12, pp. 1–9, Dec. 2011. DOI: 10.1115/1.4004430.
  • K. H. Do and S. P. Jang, “Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick,” Int. J. Heat Mass Transfer, vol. 53, no. 9–10, pp. 2183–2192, Apr. 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.020.
  • J. Wang, Z. Zhai, D. Zheng, L. Yang and B. Sundén, “Investigation of Heat Transfer Characteristics of Al2O3-Water Nanofluids in an Electric Heater,” Heat Transfer Eng., vol. 42, no. 19–20, pp. 1765–1774, Nov. 2021. DOI: 10.1080/01457632.2020.1818427.
  • J. J. Zhao, Y. Y. Duan, X. D. Wang and B. X. Wang, “Effect of nanofluids on thin film evaporation in microchannels,” J. Nanopart Res., vol. 13, no. 10, pp. 5033–5047, Oct. 2011. DOI: 10.1007/s11051-011-0484-y.
  • K. Park, K. J. Noh and K. S. Lee, “Transport phenomena in the thinfilm region of a micro-channel,” Int. J. Heat Mass Transfer, vol. 46, no. 13, pp. 2381–2388, Jun. 2003. DOI: 10.1016/S0017-9310(02)00541-0.
  • M. S. Hanchak, M. D. Vangsness, L. W. Byrd and J. S. Ervin, “Thin film evaporation of n-octane on silicon: experiments and theory,” Int. J. Heat Mass Transfer, vol. 75, pp. 196–206, Aug. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.063.
  • M. S. Hanchak, M. D. Vangsness, J. S. Ervin and L. W. Byrd, “Model and experiments of the transient evolution of a thin, evaporating liquid film,” Int. J. Heat Mass Transfer, vol. 92, pp. 757–765, Jan. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.051.
  • H. Wang, S. V. Garimella and J. Y. Murthy, “Characteristics of an evaporating thin film in a microchannel,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 3933–3942, Sep. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.052.
  • R. Dwivedi and P. K. Singh, “Decisive influence of nanofluid on thin evaporating meniscus,” Presented at the Thermophysics, 2018. Slovakia, Nov. 7.
  • R. Dwivedi and P. K. Singh, “Numerical analysis of an evaporating thin film region: enticing influence of nanofluid,” Numerical Heat Transfer, Part A: Applications, vol. 75, no. 1, pp. 56–70, Jan. 2019. DOI: 10.1080/10407782.2018.1562745.
  • R. Dwivedi, S. Pati and P. K. Singh, “Combined effects of wall slip and nanofluid on interfacial transport from a thin-film evaporating meniscus in a microfluidic channel,” Microfluid Nanofluid, vol. 24, no. 11, pp. 1–17, Nov. 2020. DOI: 10.1007/s10404-020-02390-y.
  • S. Narayanan, A. G. Fedorov and Y. K. Joshi, “Interfacial transport of evaporating water confined in nanopores,” Langmuir, vol. 27, no. 17, pp. 10666–10676, Jul. 2011. DOI: 10.1021/la201807a.
  • H. Hu, C. R. Weinberger and Y. Sun, “Model of meniscus shape and disjoining pressure of thin liquid films on nanostructured surfaces with electrostatic interactions,” J. Phys. Chem. C, vol. 119, no. 21, pp. 11777–11785, May 2015. DOI: 10.1021/acs.jpcc.5b03250.
  • S. Ozerinç, S. Kakaç and A. G. Yazıcıoglu, “Enhanced thermal conductivity of nanofluids: A state-of-the-art review,” Microfluid Nanofluid, vol. 8, no. 2, pp. 145–170, Feb. 2010. DOI: 10.1007/s10404-009-0524-4.
  • W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,” J. Nanopart. Res., vol. 5, no. 1/2, pp. 167–171, Apr. 2003. DOI: 10.1023/A:1024438603801.
  • S. K. Das, N. Putra, P. Thiesen and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transfer, vol. 125, no. 4, pp. 567–574, Aug. 2003. DOI: 10.1115/1.1571080.
  • S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Appl. Phys. Lett., vol. 84, no. 21, pp. 4316–4318, May 2004. DOI: 10.1063/1.1756684.
  • P. D. Shima, J. Philip and B. Raj, “Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids,” Appl. Phys. Lett., vol. 94, no. 22, pp. 223101, Jun. 2009. DOI: 10.1063/1.3147855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.