248
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid-nanofluid Flow through Partially Porous Wavy Channels: Thermo-hydraulic Performance and Entropy Analysis

ORCID Icon, ORCID Icon & ORCID Icon

References

  • E. Aslan, M. Ozsaban, G. Ozcelik, and H. R. Guven, “A numerical analysis of convection heat transfer and friction factor for oscillating corrugated channel flows,” Heat Transf. Eng., vol. 42, no. 3–4, pp. 181–190, 2021. DOI: 10.1080/01457632.2019.1699287.
  • P. Kumar and K. M. Pandey, “Effect on heat transfer characteristics of nanofluids flowing under laminar and turbulent flow regime–A review,” IOP Conf. Series: Mater. Sci. Eng., vol. 225, no. 1, pp. 012168, Aug. 2017. DOI: 10.1088/1757-899X/225/1/012168.
  • A. Kumar, S. Nath, and D. Bhanja, “Effect of nanofluid on thermo hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling,” Numer. Heat Transf. A., vol. 73, no. 7, pp. 429–445, Apr. 2018. DOI: 10.1080/10407782.2018.
  • R. Andrzejczyk, T. Muszynski, and P. Kozak, “Experimental and computational fluid dynamics studies on straight and U-bend double tube heat exchangers with active and passive enhancement methods,” Heat Transf. Eng., vol. 42, no. 3–4, pp. 167–180, 2021. DOI: 10.1080/01457632.2019.1699279.
  • M. R. Habibi and M. R. Salimpour, “Numerical study of nanofluid convective heat transfer in sinusoidal tubes,” Heat Transf. Eng., vol. 40, no. 15, pp. 1259–1267, 2019. DOI: 10.1080/01457632.2018.1460927.
  • M. Khoshvaght-Aliabadi, “Thermal-hydraulic characteristics of novel configurations of wavy channel: Nanofluid as working fluid,” Heat Transf. Eng., vol. 38, no. 16, pp. 1382–1395, 2017. DOI: 10.1080/01457632.2016.1255028.
  • T. Coşkun and E. Çetkin, “Heat transfer enhancement in a microchannel heat sink: Nanofluids and/or micro pin fins,” Heat Transf. Eng., vol. 41, no. 21, pp. 1818–1828, 2020. DOI: 10.1080/01457632.2019.1670467.
  • H. Alijani, B. Çetin, Y. Akkuş, and Z. Dursunkaya, “Experimental thermal performance characterization of flat grooved heat pipes,” Heat Transf. Eng., vol. 40, no. 9–10, pp. 784–793, 2019. DOI: 10.1080/01457632.2018.1442395.
  • A. Kumar and C. Bakli, “Interplay of wettability and confinement enhancing the performance of heat sinks,” Appl. Therm. Eng., vol. 214, pp. 118865, Sep. 2022. DOI: 10.1016/j.applthermaleng.2022.118865.
  • P. Kumar and K. M. Pandey, “A review on latest development in heat transfer through porous media in combination with nanofluids and wavy walls,” Mater. Today: Proc., vol. 45, pp. 7171–7175, Jan. 2021. DOI: 10.1016/j.matpr.2021.02.411.
  • P. Kumar and K. M. Pandey, “Effect of wave shift of porous slab on thermo-hydraulic transport characteristics of laminar flow through a wavy channel,” Mater. Today: Proc., vol. 49, pp. 1573–1578, Jan. 2022. DOI: 10.1016/j.matpr.2021.07.349.
  • A. G. Ramgadia and A. K. Saha, “Numerical study of fully developed unsteady flow and heat transfer in asymmetric wavy channels,” Int. J. Heat Mass Transf., vol. 102, pp. 98–112, Nov. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.131.
  • T. Ma, et al., “Experimental and numerical study on heat transfer and pressure drop performance of cross-wavy primary surface channel,” Energy Conv. Mgmt., vol. 125, pp. 80–90, Oct. 2016. DOI: 10.1016/j.enconman.2016.06.055.
  • Y. J. Baik, S. Jeon, B. Kim, D. Jeon, and C. Byon, “Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors,” Int. J. Heat Mass Transf., vol. 114, pp. 809–815, Nov. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.119.
  • M. K. Aliabadi, M. G. Samani, F. Hormozi, and A. H. Asl, “3D-CFD simulation and neural network model for the j and f factors of the wavy fin-and-flat tube heat exchangers,” Brazilian J. Chem. Eng., vol. 28, no. 3, pp. 505–520, Sep. 2011. DOI: 10.1590/S0104-66322011000300016.
  • N. Dukhan, O. Bagci, and M. Ozdemir, “Thermal development in open-cell metal foam: An experiment with constant wall heat flux,” Int. J. Heat Mass Transf., vol. 85, pp. 852–859, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.047.
  • I. Kurtbas and N. Celik, “Experimental investigation of forced and mixed convection heat transfer in a foam-filled horizontal rectangular channel,” Int. J. Heat Mass Transf., vol. 52, no. 5–6, pp. 1313–1325, Feb. 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.050.
  • A. Kumar and C. Bakli, “Effect of porous walls and nanofluids on the thermo-hydraulic performance of tapered double-layered microchannel heat sink,” Proceedings of the ASME 2022 Power Conference. ASME 2022 Power Conference, Pittsburgh, Pennsylvania, USA, Jul. 2022. V001T15A009. DOI: 10.1115/POWER2022-86626.
  • G. Lu, J. Zhao, L. Lin, X.-D. Wang, and W.-M. Yan, “A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins,” Int. J. Heat Mass Transf., vol. 111, pp. 1071–1078, Aug. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.086.
  • A. Kumar, V. Arya and C. Bakli, “Optimizing Effectiveness of Double Pipe Heat Exchanger Using Nanofluid and Different Porous Fins Arrangement,” Proceedings of the ASME 2021 Power Conference. ASME 2021 Power Conference. Virtual, Online. Jul. 20–22, 2021. V001T04A001. ASME. DOI: 10.1115/POWER2021-64248.
  • D. Poulikakos and M. Kazmierczak, “Forced convection in a duct partially filled with a porous material,” J. Heat Transf., vol. 109, no. 3, pp. 653–662, Aug. 1987. DOI: 10.1115/1.3248138.
  • D. Bhargavi and J. S. K. Reddy, “Effect of heat transfer in the thermally developing region of the channel partially filled with a porous medium: Constant wall heat flux,” Int. J. Therm. Sci., vol. 130, pp. 484–495, Aug. 2018. DOI: 10.1016/j.ijthermalsci.2018.04.039.
  • B. Wang, et al., “Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials,” Energy Conv. Mgmt., vol. 105, pp. 206–215, Nov. 2015. DOI: 10.1016/j.enconman.2015.07.064.
  • S. Ergun, “Fluid flow through packed columns,” Chem. Eng. Prog., vol. 48, no. 2, pp. 89–94, 1952.
  • D. Bhowmick, P. R. Randive, and S. Pati, “Implication of corrugation profile on thermo-hydraulic characteristics of Cu-water nanofluid flow through partially filled porous channel,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105329, Jun. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105329.
  • M. Torabi, N. Karimi, and K. Zhang, “Heat transfer and entropy generation in a partial porous channel using LTNE and exothermicity/endothermicity features,” Int. J. Mech. Mechatronics Eng., vol. 10, no. 2, pp. 450–455, Mar. 2017. DOI: 10.5281/zenodo.1129956.
  • C. Zhao, Z. Zhang, and P. Jiang, “Predictions of in-tube cooling heat transfer coefficients and pressure drops of CO2 and lubricating oil mixture at supercritical pressures,” Heat Transf. Eng., vol. 39, no. 16, pp. 1437–1449, Oct. 2018. DOI: 10.1080/01457632.2017.1379340.
  • Q. Yan, C. Ma, and W. Wang, “Study on the effect of different additives on improving the thermal conductivity of organic PCM,” Heat Transf. Eng., vol. 95, no. 1, pp. 80–91, Nov. 2021. DOI: 10.1080/01411594.2021.1998496.
  • A. Kumar, V. Arya, and C. Bakli, “Decoding the Alteration of Thermal Conductivity of Nanofluids from Molecular Perspective,” Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17–20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India, pp. 1417–1422, Dec, 2021. DOI: 10.1615/IHMTC-2021.2140.
  • M. Sheikholeslami, M. B. Gerdroodbary, R. Moradi, A. Shafee, and Z. Li, “Application of neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel,” Comput. Methods Appl. Mech. Eng., vol. 344, pp. 1–12, Feb. 2019. DOI: 10.1016/j.cma.2018.09.025.
  • M. Sheikholeslami, “New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media,” Comput. Methods Appl. Mech. Eng., vol. 344, pp. 319–333, Feb. 2019. DOI: 10.1016/j.cma.2018.09.044.
  • M. Sheikholeslami, “Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method,” Comput. Methods Appl. Mech. Eng., vol. 344, pp. 306–318, Feb. 2019. DOI: 10.1016/j.cma.2018.09.042.
  • M. Sheikholeslami, A. Arabkoohsar, I. Khan, A. Shafee, and Z. Li, “Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus,” J. Cleaner Prod., vol. 221, pp. 885–898, Jun. 2019. DOI: 10.1016/j.jclepro.2019.02.075.
  • M. Sheikholeslami, M. Jafaryar, A. Shafee, and Z. Li, “Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nano-particles,” J. Therm. Anal. Calori., vol. 134, no. 3, pp. 2295–2303, Dec. 2018. DOI: 10.1007/s10973-018-7866-7.
  • M. Jafaryar, M. Sheikholeslami, Z. Li, and R. Moradi, “Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis,” J. Therm. Anal. Calori., vol. 135, no. 1, pp. 305–323, Jan. 2019. DOI: 10.1007/s10973-018-7093-2.
  • W. Arshad and H. M. Ali, “Graphene nanoplatelets nano-fluids thermal and hydrodynamic performance on integral fin heat sink,” Int. J. Heat Mass Transf., vol. 107, pp. 995–1001, Apr. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.127.
  • H. M. Ali and W. Arshad, “Effect of channel angle of pin-fin heat sink on heat transfer performance using water-based graphene nanoplatelets nanofluids,” Int. J. Heat Mass Transf., vol. 106, pp. 465–472, Mar. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.061.
  • R. Dwivedi and P. K. Singh, “Numerical analysis of an evaporating thin film region: Enticing Influence of nanofluid,” Numer. Heat Transf. A, vol. 75, no. 1, pp. 56–70, Jan. 2019. DOI: 10.1080/10407782.2018.1562745.
  • R. Dwivedi, S. Pati, and P. K. Singh, “Combined effects of wall slip and nanofluid on interfacial transport from a thin-film evaporating meniscus in a microfluidic channel,” Microfluid Nano-fluid, vol. 24, no. 11, pp. 1–17, Nov. 2020. DOI: 10.1007/s10404-020-02390-y.
  • H. Behzadnia, H. Jin, M. Najafian, and M. Hatami, “Investigation of supercritical water-based nanofluid with different nanoparticles (shapes and types) used in the rectangular corrugated tube of reactors,” Alexandria Eng. J., vol. 61, no. 3, pp. 2330–2347, Mar. 2022. DOI: 10.1016/j.aej.2021.06.083.
  • R. K. Ajeel, W. S. I. W. Salim, and K. Hasnan, “Thermal and hydraulic characteristics of turbulent nano-fluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped,” Case Stud. Therm. Eng., vol. 12, pp. 620–635, Sep. 2018. DOI: 10.1016/j.csite.2018.08.002.
  • T. Tayebi and A. J. Chamkha, “Buoyancy-driven heat transfer enhancement in a sinusoidally heated enclosure utilizing hybrid nanofluid,” Comput. Therm. Sci. Int. J., vol. 9, no. 5, pp. 405–421, Jun. 2017. DOI: 10.1615/ComputThermalScien.2017019908.
  • T. Tayebi and A. J. Chamkha, “Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block,” Int. J. Num. Method Heat Fluid Flow., vol. 30, no. 3, pp. 1115–1136, Sep. 2019. DOI: 10.1108/HFF-04-2019-0350.
  • H. M. Ali, et al., “Preparation techniques of TiO2 nanofluids and challenges: A review,” Appl. Sci., vol. 8, no. 4, pp. 587, Apr. 2018. DOI: 10.3390/app8040587.
  • H. H. Balla, S. Abdullah, W. MohdFaizal, R. Zulkifli, and K. Sopian, “Numerical study of the enhancement of heat transfer for hybrid CuO-Cu nano-fluids flowing in a circular pipe,” J. Oleo. Sci., vol. 62, no. 7, pp. 533–539, Jan . 2013. DOI: 10.5650/jos.62.533.
  • B. Takabi, A. M. Gheitaghy, and P. Tazraei, “Hybrid water-based suspension of Al2O3 and Cu nano-particles on laminar convection effectiveness,” J. Thermophys. Heat Transf., vol. 30, no. 3, pp. 523–532, Jul. 2016. DOI: 10.2514/1.T4756.
  • T. Tayebi and A. J. Chamkha, “Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids,” Numer. Heat Transf. A., vol. 70, no. 10, pp. 1141–1156, Nov. 2016. DOI: 10.1080/10407782.2016.1230423.
  • M. Benkhedda, T. Boufendi, T. Tayebi, and A. J. Chamkha, “Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nano-particles shapes effect,” J. Therm. Anal. Calori., vol. 140, no. 1, pp. 411–425, Apr. 2020. DOI: 10.1007/s10973-019-08836-y.
  • M. Akbarzadeh, S. Rashidi, and J. A. Esfahani, “Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel,” Appl. Therm. Eng., vol. 116, pp. 278–291, Apr. 2017. DOI: 10.1016/j.applthermaleng.2017.01.076.
  • H. M. S. Bahaidarah and A. Z. Sahin, “Thermodynamic analysis of fluid flow in channels with wavy sinusoidal walls,” Therm. Sci., vol. 17, no. 3, pp. 813–822, 2013. DOI: 10.2298/TSCI110403200B.
  • S. Bhardwaj, A. Dalal, and S. Pati, “Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure,” Energy., vol. 79, pp. 467–481, Jan. 2015. DOI: 10.1016/j.energy.2014.11.036.
  • M. Maerefat, S. Y. Mahmoudi, and K. Mazaheri, “Numerical simulation of forced convection enhancement in a pipe by porous inserts,” Heat Transf. Eng., vol. 32, no. 1, pp. 45–56, Jan . 2011. DOI: 10.1080/01457631003732854.
  • M. Torabi, N. Karimi, G. P. Peterson, and S. Yee, “Challenges and progress on the modelling of entropy generation in porous media: A review,” Int. J. Heat Mass Transf., vol. 114, pp. 31–46, Nov. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.021.
  • M. Torabi, K. Zhang, N. Karimi, and G. P. Peterson, “Entropy generation in thermal systems with solid structures–A concise review,” Int. J. Heat Mass Transf., vol. 97, pp. 917–931, Jun. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.007.
  • R. C. Givler and S. A. Altobelli, “A determination of the effective viscosity for the Brinkman–Forchheimer flow model,” J. Fluid Mech., vol. 258, pp. 355–370, Jan. 1994. DOI: 10.1017/S0022112094003368.
  • H. R. Ashorynejad and A. Zarghami, “Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel,” Int. J. Heat Mass Transf., vol. 119, pp. 247–258, Apr. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.117.
  • K. Anirudh and S. Dhinakaran, “Effects of Prandtl number on the forced convection heat transfer from a porous square cylinder,” Int. J. Heat Mass Transf., vol. 126, pp. 1358–1375, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.003.
  • C. Yang, A. Nakayama, and W. Liu, “Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium,” Int. J. Therm. Sci., vol. 54, pp. 98–108, Apr. 2012. DOI: 10.1016/j.ijthermalsci.2011.10.023.
  • M. Torabi, N. Karimi, and K. Zhang, “Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources,” Energy., vol. 93, pp. 106–127, Dec. 2015. DOI: 10.1016/j.energy.2015.09.010.
  • D. Y. Lee and K. Vafai, “Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media,” Int. J. Heat Mass Transf., vol. 42, no. 3, pp. 423–435, Feb. 1999. DOI: 10.1016/S0017-9310(98)00185-9.
  • W. J. Minkowycz, A. H. Sheikh, and K. F. Vafai, “On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number,” Int. J. Heat Mass Transf., vol. 42, no. 18, pp. 3373–3385, Sep. 1999. DOI: 10.1016/S0017-9310(99)00043-5.
  • P. Kumar and K. M. Pandey, “Numerical investigation of thermo-hydraulic transport characteristics of two-dimensional, steady flow through partially porous wavy channel,” Numer. Heat Transf. A, vol. 81, no. 1–2, pp. 31–47, Sep. 2021. DOI: 10.1080/10407782.2021.1969809.
  • P. Kumar, R. Dwivedi, and K. M. Pandey, “Numerical investigation of thermo-hydraulic transport characteristics of laminar flow through partially filled porous wavy channel: Effect of Prandtl number,” Numer. Heat Transf. A Appl., vol. 83, pp. 1–22, Aug. 2022. DOI: 10.1080/10407782.2022.2102342.
  • P. Kumar and K. M. Pandey, “Effect of porous slab thickness and Darcy number on thermohydraulic transport characteristics of Ag–TiO2/water hybrid nanofluid flow-through partially porous wavy channels,” Heat Transf., vol. 51, pp. 1–29, Sep. 2022. DOI: 10.1002/htj.22687.
  • M. Akbarzadeh, S. Rashidi, N. Karimi, and N. Omar, “First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert,” J. Therm. Anal. Calori., vol. 135, no. 1, pp. 177–194, Jan. 2019. DOI: 10.1007/s10973-018-7044-y.
  • C. C. Wang and C. K. Chen, “Forced convection in a wavy-wall channel,” Int. J. Heat Mass Transf., vol. 45, no. 12, pp. 2587–2595, Jun. 2002. DOI: 10.1016/S0017-9310(01)00335-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.