142
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Pool Boiling Heat Transfer in Saturated R407C Using Reentrant Cavity Surfaces

, &

References

  • A. E. Bergles, “Some perspectives on enhanced heat transfer-second-generation heat transfer technology,” J. Heat Transfer, vol. 110, no. 4b, pp. 1082–1096, 1988. DOI: 10.1115/1.3250612.
  • W. T. Ji et al., “Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux,” Appl. Therm. Eng., vol. 127, pp. 1364–1371, Dec. 2017. DOI: 10.1016/j.applthermaleng.2017.08.130.
  • S. Halon, B. Gil, B. Bialko, and B. Zajaczkowski, “Influence of saturation temperature and heat flux on pool boiling of R245fa,” Exp. Heat Transf., vol. 34, no. 7, pp. 587–604, 2021. DOI: 10.1080/08916152.2020.1795009.
  • Y. Chen, M. Groll, R. Mertz, and R. Kulenovic, “Visualization and mechanisms of pool boiling of propane, isobutane and their mixtures on enhanced tubes with reentrant channels,” Int. J. Heat Mass Transf., vol. 48, no. 12, pp. 2516–2528, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.039.
  • S. P. Rocha, O. Kannengieser, E. M. Cardoso, and J. C. Passos, “Nucleate pool boiling of R-134a on plain and micro-finned tubes,” Int. J. Refrig., vol. 36, no. 2, pp. 456–464, 2013. DOI: 10.1016/j.ijrefrig.2012.11.031.
  • J. R. Thome, Enhanced Boiling Heat Transfer. Boca Raton, FL: CRC Press, 1990, pp. 28–63.
  • R. L. Webb, Principles of Enhanced Heat Transfer. Hoboken, NJ: John Wiley & Sons, 1994.
  • H. M. Kurihara and J. E. Myers, “The effects of superheat and surface roughness on boiling coefficients,” AIChE J., vol. 6, no. 1, pp. 83–91, Mar. 1960. DOI: 10.1002/aic.690060117.
  • S. Alangar, “Nucleate pool boiling heat transfer from a flat-plate grooved surface,” J. Enhanc. Heat Transf., vol. 22, no. 3, pp. 247–265, 2015. DOI: 10.1615/JEnhHeatTransf.2015014319.
  • A. K. Das, P. K. Das, and P. Saha, “Performance of different structured surfaces in nucleate pool boiling,” Appl. Therm. Eng., vol. 29, no. 17–18, pp. 3643–3653, 2009. DOI: 10.1016/j.applthermaleng.2009.06.020.
  • A. M. Gheitaghy, A. Samimi, and H. Saffari, “Surface structuring with inclined minichannels for pool boiling improvement,” Appl. Therm. Eng., vol. 126, pp. 892–902, Nov. 2017. DOI: 10.1016/j.applthermaleng.2017.07.200.
  • K. N. Rainey and S. M. You, “Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72,” J. Heat Transfer, vol. 122, no. 3, pp. 509–516, 2000. DOI: 10.1115/1.1288708.
  • L. H. Chien, Y. T. Cheng, Y. L. Lai, W. M. Yan, and M. Ghalambaz, “Experimental and numerical study on convective boiling in a staggered array of micro pin-fin microgap,” Int. J. Heat Mass Transf., vol. 149, pp. 119203, Mar. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119203.
  • G. Righetti, L. Doretti, H. Sadafi, K. Hooman, and S. Mancin, “Water pool boiling across low pore density aluminum foams,” Heat Transf. Eng., vol. 41, no. 19–20, pp. 1673–1682, 2020. DOI: 10.1080/01457632.2019.1640464.
  • A. M. Gheitaghy, H. Saffari, and G. Q. Zhang, “Effect of nanostructured microporous surfaces on pool boiling augmentation,” Heat Transf. Eng., vol. 40, no. 9–10, pp. 762–771, 2019. DOI: 10.1080/01457632.2018.1442310.
  • S. W. Ahmad, J. S. Lewis, R. J. McGlen, and T. G. Karayiannis, “Pool boiling on modified surfaces using R-123,” Heat Transf. Eng., vol. 35, no. 16–17, pp. 1491–1503, 2014. DOI: 10.1080/01457632.2014.889493.
  • S. S. Gajghate, A. V. Bandurkar, S. Das, B. B. Saha, and S. Bhaumik, “Effect of ZrO2 nanoparticle deposited layer on pool boiling heat transfer enhancement,” Heat Transf. Eng., vol. 42, no. 13–14, pp. 1184–1202, 2021. DOI: 10.1080/01457632.2020.1777011.
  • S.-S. Hsieh and C.-J. Weng, “Nucleate pool boiling from coated surfaces in saturated R-134a and R-407c,” Int. J. Heat Mass Transf., vol. 40, no. 3, pp. 519–532, Feb. 1997. DOI: 10.1016/0017-9310(96)00166-4.
  • L.-H. Chien, W.-R. Liao, M. Ghalambaz, and W.-M. Yan, “Experimental study on convective boiling flow and heat transfer in a microgap enhanced with a staggered arrangement of nucleated micro-pin-fins,” Int. J. Heat Mass Transf., vol. 144, pp. 118653, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118653.
  • A. K. Dewangan, A. Kumar, and R. Kumar, “Pool boiling of iso-butane and quasi azeotropic refrigerant mixture on coated surfaces,” Exp. Therm. Fluid Sci., vol. 85, pp. 176–188, Jul. 2017. DOI: 10.1016/j.expthermflusci.2017.02.028.
  • S. Jun, J. Kim, D. Son, H. Yeol, and S. M. You, “Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings,” Nucl. Eng. Technol., vol. 48, no. 4, pp. 932–940, 2016. DOI: 10.1016/j.net.2016.02.018.
  • S. A. Kline and F. A. McClintock, “Describing uncertainty in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • E. W. Lemmon, M. McLinden, and M. L. Huber, “NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures (REFPROP) version 9.0,” Boulder, Colorado: NIST, 2010.
  • M. S. El-Genk and A. Suszko, “Effects of inclination angle and liquid subcooling on nucleate boiling on dimpled copper surfaces,” Int. J. Heat Mass Transf., vol. 95, pp. 650–661, Apr. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.12.048.
  • H. J. Ivey, “Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling,” Int. J. Heat Mass Transf., vol. 10, no. 8, pp. 1023–1040, 1967. DOI: 10.1016/0017-9310(67)90118-4.
  • K. Stephan and M. Abdelsalam, “Heat-transfer correlations for natural convection boiling,” Int. J. Heat Mass Transf., vol. 23, no. 1, pp. 73–87, 1980. DOI: 10.1016/0017-9310(80)90140-4.
  • K. Cornwell and S. D. Houston, “Nucleate pool boiling on horizontal tubes: A convection-based correlation,” Int. J. Heat Mass Transf., vol. 37, no. 1, pp. 303–309, 1994. DOI: 10.1016/0017-9310(94)90031-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.