137
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermal-Hydraulic and Entropy Generation Optimization of Capsule-Type Plate Heat Exchangers With Spherical Dimples

, , , &

References

  • B. D. Raja, R. L. Jhala, and V. Patel, “Thermal-hydraulic optimization of plate heat exchanger: a multi-objective approach,” Int. J. Therm. Sci., vol. 124, pp. 522–535, Feb. 2018. DOI: 10.1016/j.ijthermalsci.2017.10.035.
  • Y. F. Zhang, C. Jiang, Z. L. Yang, Y. Y. Zhang, and B. F. Bai, “Numerical study on heat transfer enhancement in capsule-type plate heat exchangers,” Appl. Therm. Eng., vol. 108, pp. 1237–1242, Sep. 2016. DOI: 10.1016/j.applthermaleng.2016.08.033.
  • T. M. A. Elmaaty, A. E. Kabeel, and M. Mahgoub, “Corrugated plate heat exchanger review,” Renew. Sust. Energ. Rev., vol. 70, pp. 852–860, Apr. 2017. DOI: 10.1016/j.rser.2016.11.266.
  • J. Lee and K. S. Lee, “Flow characteristics and thermal performance in chevron type plate heat exchangers,” Int. J. Heat Mass Transf., vol. 78, pp. 699–706, Nov. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.033.
  • J. Lee and K. S. Lee, “Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers,” Appl. Therm. Eng., vol. 89, pp. 62–69, Oct. 2015. DOI: 10.1016/j.applthermaleng.2015.05.080.
  • Z. H. Hu, X. He, L. Ye, M. Yang, and G. H. Qin, “Full-scale research on heat transfer and pressure drop of high flux plate heat exchanger,” Appl. Therm. Eng., vol. 118, pp. 585–592, May 2017. DOI: 10.1016/j.applthermaleng.2017.03.018.
  • K. Sarraf, S. Launay, and L. Tadrist, “Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers,” Int. J. Therm. Sci., vol. 94, pp. 126–138, Aug. 2015. DOI: 10.1016/j.ijthermalsci.2015.03.002.
  • T. S. Khan, M. S. Khan, and Z. H. Ayub, “Single phase flow pressure drop analysis in a plate heat exchanger,” Heat Transf. Eng., vol. 38, no. 2, pp. 256–264, 2017. DOI: 10.1080/01457632.2016.1177430.
  • B. Kumar, A. Soni, and S. N. Singh, “Effect of geometrical parameters on the performance of chevron type plate heat exchanger,” Exp. Therm. Fluid Sci., vol. 91, pp. 126–133, Feb. 2018. DOI: 10.1016/j.expthermflusci.2017.09.023.
  • M. Lyytikäinen, T. Hämäläinen, and J. Hämäläinen, “A fast modelling tool for plate heat exchangers based on depth-averaged equations,” Int. J. Heat Mass Transf., vol. 52, no. 5-6, pp. 1132–1137, 2009. Feb DOI: 10.1016/j.ijheatmasstransfer.2008.10.001.
  • C. Gulenoglu, F. Akturk, S. Aradag, N. S. Uzol, and S. Kakac, “Experimental comparison of performances of three different plates for gasketed plate heat exchangers,” Int. J. Therm. Sci., vol. 75, pp. 249–256, Jan. 2014. DOI: 10.1016/j.ijthermalsci.2013.06.012.
  • Z. Liu, Z. Chen, W. Li, Z. K. Ding, and Z. M. Xu, “Composite fouling characteristics on Ni-P-PTFE nanocomposite surface in corrugated plate heat exchanger,” Heat Transf. Eng., vol. 42, no. 22, pp. 1877–1888, 2021. DOI: 10.1080/01457632.2020.1834202.
  • J. Wajs and D. Mikielewicz, “Effect of surface roughness on thermal-hydraulic characteristics of plate heat exchanger,” Key Eng. Mater., vol. 597, pp. 63–74, Dec 2013. DOI: 10.4028/www.scientific.net/KEM.597.63.
  • K. Nilpueng, T. Keawkamrop, H. S. Ahn, and S. Wongwises, “Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger,” Int. Commun. Heat Mass Transf., vol. 91, pp. 201–209, Feb. 2018. DOI: 10.1016/j.icheatmasstransfer.2017.12.009.
  • H. U. Zettler, M. Wei, Q. Zhao, and H. M. Steinhagen, “Influence of surface properties and characteristics on fouling in plate heat exchangers,” Heat Transf. Eng., vol. 26, no. 2, pp. 3–17, 2005. DOI: 10.1080/01457630590897024.
  • I. Gherasim, M. Taws, N. Galanis, and C. T. Nguyen, “Numerical and experimental investigation of buoyancy effects in a plate heat exchanger,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 347–363, Mar. 2013. DOI: 10.1016/j.applthermaleng.2012.09.009.
  • B. P. Rao and S. K. Das, “An experimental study on the influence of flow maldistribution on the pressure drop across a plate heat exchanger,” J. Fluids Eng., vol. 126, no. 4, pp. 680–691, 2004. Jul. DOI: 10.1115/1.1779664.
  • T. Ma, P. Zhang, H. Shi, Y. Chen, and Q. Wang, “Prediction of flow maldistribution in printed circuit heat exchanger,” Int. J. Heat Mass Tran, vol. 152, pp. 119560, May 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119560.
  • A. Bhattad, J. Sarkar, and P. Ghosh, “Energetic and exergetic performances of plate heat exchanger using brine-based hybrid nanofluid for milk chilling application,” Heat Transf. Eng., vol. 41, no. 6–7, pp. 522–535, 2020. DOI: 10.1080/01457632.2018.1546770.
  • Z. J. Luan, G. M. Zhang, M. C. Tian, and M. X. Fan, “Flow resistance and heat transfer characteristics of a new-type plate heat exchanger,” J. Hydrodyn., vol. 20, no. 4, pp. 524–529, Aug. 2008. DOI: 10.1016/S1001-6058(08)60089-X.
  • M. Piper, A. Olenberg, J. M. Tran, and E. Y. Kenig, “Determination of the geometric design parameters of pillow-plate heat exchangers,” Appl. Therm. Eng., vol. 91, pp. 1168–1175, Dec. 2015. DOI: 10.1016/j.applthermaleng.2015.08.097.
  • M. Piper, A. Zibart, J. M. Tran, and E. Y. Kenig, “Numerical investigation of turbulent forced convection heat transfer in pillow plates,” Int. J. Heat Mass Transf., vol. 94, pp. 516–527, Mar. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.014.
  • M. Piper, et al., “Heat transfer enhancement in pillow-plate heat exchangers with dimpled surfaces: a numerical study,” Appl. Therm. Eng., vol. 153, pp. 142–146, Feb. 2019. DOI: 10.1016/j.applthermaleng.2019.02.082.
  • M. Shirzad, M. A. Delavar, S. S. M. Ajarostaghi, and K. Sedighi, “Evaluation the effects of geometrical parameters on the performance of pillow plate heat exchanger,” Chem. Eng. Res. Des., vol. 150, pp. 74–83, Oct. 2019. DOI: 10.1016/j.cherd.2019.06.032.
  • S. W. Hong, O. K. Kwon, and J. D. Chung, “Application of an embossed plate heat exchanger to adsorption chiller,” Int. J. Refrig., vol. 65, pp. 142–153, May 2016. DOI: 10.1016/j.ijrefrig.2016.02.012.
  • J. Y. Jeong, H. K. Hong, S. K. Kim, and Y. T. Kang, “Impact of plate design on the performance of welded type plate heat exchangers for sorption cycles,” Int. J. Refrig., vol. 32, no. 4, pp. 705–711, Jun. 2009. DOI: 10.1016/j.ijrefrig.2009.01.028.
  • A. Durmuş, H. Benli, İ. Kurtbaş, and H. Gül, “Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles,” Int. J. Heat Mass Tran, vol. 52, no. 5–6, pp. 1451–1457, Feb. 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.052.
  • D. P. Soman, S. Karthika, P. Kalaichelvi, and T. K. Radhakrishnan, “Experimental study of turbulent forced convection heat transfer and friction factor in dimpled plate heat exchanger,” Appl. Therm. Eng., vol. 162, pp. 114254, Aug. 2019. DOI: 10.1016/j.applthermaleng.2019.114254.
  • S. Rashidi, F. Hormozi, B. Sundén, and O. Mahian, “Energy saving in thermal energy systems using dimpled surface technology-A review on mechanisms and applications,” Appl. Energy, vol. 250, pp. 1491–1547, May 2019. DOI: 10.1016/j.apenergy.2019.04.168.
  • V. Singh and M. Gupta, “Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: a review,” Energ. Convers. Manage., vol. 123, pp. 290–307, Sep. 2016. DOI: 10.1016/j.enconman.2016.06.035.
  • B. Lotfi and B. Sundén, “Thermo-hydraulic performance enhancement of finned elliptical tube heat exchangers by utilizing innovative dimple turbulators,” Heat Transfer Eng., vol. 41, no. 13, pp. 1117–1142, 2020. DOI: 10.1080/01457632.2019.1611132.
  • B. Lotfi, B. Sundén, and Q. W. Wang, “An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators,” Appl. Energy, vol. 162, pp. 1282–1302, Jan. 2016. DOI: 10.1016/j.apenergy.2015.07.065.
  • W. Du, L. Luo, S. T. Wang, and X. H. Zhang, “Heat transfer characteristics in a pin finned channel with different dimple locations,” Heat Transf. Eng., vol. 41, no. 14, pp. 1232–1251, 2020. DOI: 10.1080/01457632.2019.1637114.
  • B. Suvanjan, C. Himadri, G. Anindya, and B. A. Cemal, “Investigation of inclined turbulators for heat transfer enhancement in a solar air heater,” Heat Transf. Eng., vol. 40, no. 17–18, pp. 1451–1460, 2018. DOI: 10.1080/01457632.2018.1474593.
  • S. Borjigin, S. X. Zhang, M. Zeng, Q. W. Wang, and T. Ma, “Coupling ε-NTU method for thermal design of heat exchanger in cabinet cooling system,” Appl. Therm. Eng., vol. 159, pp. 113972, Aug. 2019. DOI: 10.1016/j.applthermaleng.2019.113972.
  • I. Gherasim, M. Taws, N. Galanis, and C. T. Nguyen, “Heat transfer and fluid flow in a plate heat exchanger part II: assessment of laminar and two-equation turbulent models,” Int. J. Therm. Sci., vol. 50, no. 8, pp. 1499–1511, Aug. 2011. DOI: 10.1016/j.ijthermalsci.2011.03.017.
  • W. W. Focke and P. G. Knibbe, “Flow visualization in parallel-plate ducts with corrugated walls,” J. Fluid Mech., vol. 165, no. 1, pp. 73–77, 1986. Apr. DOI: 10.1017/S0022112086003002.
  • A. Sharif, B. Ameel, I. T'Jollyn, S. Lecompte, and M. D. Paepe, “Comparative performance assessment of plate heat exchangers with triangular corrugation,” Appl. Therm. Eng., vol. 141, pp. 186–199, Aug. 2018. DOI: 10.1016/j.applthermaleng.2018.05.111.
  • S. Freund and S. Kabelac, “Investigation of local heat transfer coefficients in plate heat exchangers with temperature oscillation IR thermography and CFD,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 3764–3781, Sep. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.04.027.
  • S. Chtourou, H. Djemal, M. Kaffel, and M. Bacca, “Thermal efficiency and performance enhancement examination in a new PHE design,” Case Stud. Therm. Eng., vol. 28, pp. 101502, Dec. 2021. DOI: 10.1016/j.csite.2021.101502.
  • A. Muley and R. M. Manglik, “Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates,” J. Heat Transf., vol. 121, no. 1, pp. 110–117, 1999. Feb. DOI: 10.1115/1.2825923.
  • ANSYS. Fluent 19.2 User’s Guide. Canonsburg, PA: ANSYS Inc., January 2019.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” Int. J. Heat Mass Transf., vol. 24, no. 4, pp. 715–726, 1981. DOI: https://doi.org/10.1016/0017-9310(81)90015-6.
  • J. Moore and J. G. Moore, “Entropy production rates from viscous flow calculations: Part I-A turbulent boundary layer flow,” Proceedings of the ASME 1983 International Gas Turbine Conference and Exhibit. Volume 1: Turbomachinery. Phoenix, Arizona, USA. March 27–31, 1983, pp. 27–31, Mar. 1983. DOI: 10.1115/83-GT-70.
  • A. Ebrahimi, F. Rikhtegar, A. Sabaghan, and E. Roohi, “Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids,” Energy, vol. 101, pp. 190–201, Apr. 2016. DOI: 10.1016/j.energy.2016.01.102.
  • A. Elkaroui, M. H. Gazzah, N. M. Saïd, P. Bournot, and G. L. Palec, “Entropy generation concept for a turbulent plane jet with variable density,” Comput. Fluids, vol. 168, pp. 328–341, May 2018. DOI: 10.1016/j.compfluid.2017.01.003.
  • X. S. Shi, Y. W. Wang, X. L. Huai, and K. Y. Cheng, “Influence of geometrical parameters on thermal-hydraulic performance and entropy generation in cross-wavy channels with variable air properties,” Appl. Therm. Eng., vol. 157, pp. 113714, Jul. 2019. DOI: 10.1016/j.applthermaleng.2019.113714.
  • R. Dormohammadi, M. F. Gord, A. E. Moghadam, and M. H. Ahmadi, “Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels,” J. Mol. Liq, vol. 269, pp. 229–240, Nov. 2018. DOI: 10.1016/j.molliq.2018.07.119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.