209
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical Investigation on Pool Boiling Heat Transfer of Silica and Alumina Nanofluids

, &

References

  • S. Mukherjee, S. Ebrahim, P. C. Mishra, N. Ali, and P. Chaudhuri, “A review on pool and flow boiling enhancement using nanofluids: nuclear reactor application,” Processes, vol. 10, no. 1, pp. 177, Jan. 2022. DOI: 10.3390/pr10010177.
  • M. M. Mahmoud and T. G. Karayiannis, “Pool boiling review. I. Fundamentals of boiling and relation to surface design,” Therm. Sci. Eng. Prog., vol. 25, pp. 101024, Oct. 2021. DOI: 10.1016/j.tsep.2021.101024.
  • A. Marie, S. Cioulachtjian, S. Lips, and V. Sartre, “Thermal interactions between nucleation sites and the solid wall during pool boiling of a pure fluid: A review,” Int. J. Therm. Sci., vol. 174, pp. 107388, Apr. 2022. DOI: 10.1016/j.ijthermalsci.2021.107388.
  • M. Khooshehchin, A. Mohammadidoust, and S. Fathi, “Experimental investigation of stabilizers of nanofluid in the pool boiling process,” Heat Transf. Eng., vol. 44, no. 5, pp. 442–460, 2023. DOI: 10.1080/01457632.2022.2068220.
  • A. Ranjan, I. Ahmad, R. K. Gouda, M. Pathak, and M. K. Khan, “Enhancement of critical heat flux (CHF) in pool boiling with anodized copper surfaces,” Int. J. Therm. Sci., vol. 172, no. part B, pp. 107338, Feb. 2022. DOI: 10.1016/j.ijthermalsci.2021.107338.
  • H. Aminfar, M. Mohammadpourfard, and M. Sahraro, “Numerical simulation of nucleate pool boiling on the horizontal surface for nano-fluid using wall heat flux partitioning method,” Comput. Fluids, vol. 66, pp. 29–38, Aug. 2012. DOI: 10.1016/j.compfluid.2012.05.019.
  • H. Yeom, K. Sridharan, and M. L. Corradini, “Bubble dynamics in pool boiling on nanoparticle-coated surfaces,” Heat Transf. Eng., vol. 36, no. 12, pp. 1013–1027, 2015. DOI: 10.1080/01457632.2015.979116.
  • I. S. Kiyomura, L. L. Manetti, A. P. da Cunha, G. Ribatski, and E. M. Cardoso, “An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water,” Int. J. Heat Mass Transf., vol. 106, pp. 666–674, Mar. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.051.
  • A. Nazari and S. Saedodin, “Porous anodic alumina coating for optimisation of pool-boiling performance,” Surf. Eng., vol. 33, no. 10, pp. 753–759, 2017. DOI: 10.1080/02670844.2016.1199187.
  • G. Song, P. A. Davies, J. Wen, G. Xu, and Y. Quan, “Nucleate pool boiling heat transfer of SES36 fluid on nanoporous surfaces obtained by electrophoretic deposition of Al2O3,” Appl. Therm. Eng., vol. 141, pp. 143–152, Aug. 2018. DOI: 10.1016/j.applthermaleng.2017.12.068.
  • X. Quan, D. Wang, and P. Cheng, “An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid,” Int. J. Heat Mass Transf., vol. 108, pp. 32–40, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.098.
  • H. Noh et al., “Effect of surface structure and coating on the heat transfer deflection behavior in the early stage of nucleate boiling,” Int. J. Heat Mass Transf., vol. 126, no. part A, pp. 1315–1322, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.122.
  • M. Ray and S. Bhaumik, “Nucleate pool boiling heat transfer of hydro-fluorocarbon refrigerant R134a on TiO2 nanoparticle coated copper heating surfaces,” Heat Transf. Eng., vol. 40, no. 12, pp. 997–1006, 2019. DOI: 10.1080/01457632.2018.1450333.
  • S. M. A. Noori Rahim Abadi, A. Ahmadpour, and J. P. Meyer, “Numerical simulation of pool boiling on smooth, vertically aligned tandem tubes,” Int. J. Therm. Sci., vol. 132, pp. 628–644, Oct. 2018. DOI: 10.1016/j.ijthermalsci.2018.07.005.
  • N. Gobinath, T. Venugopal, K. Palani, and A. A. Samuel, “Numerical modelling of thermophoresis in water-alumina nanofluid under pool boiling conditions,” Int. J. Therm. Sci., vol. 129, pp. 1–13, Jul. 2018. DOI: 10.1016/j.ijthermalsci.2018.02.025.
  • R. R. Gupta, S. Bhambi, and V. K. Agarwal, “CFD modeling for nucleate pool boiling of nanofluids,” Numeric. Heat Transf. Part A Appl., vol. 75, no. 6, pp. 402–412, 2019. DOI: 10.1080/10407782.2019.1591863.
  • J. Wang, M. Diao, and X. Liu, “Numerical simulation of pool boiling with special heated surfaces,” Int. J. Heat Mass Transf., vol. 130, pp. 460–468, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.120.
  • F. Pourfattah et al., “Numerical simulation of the effect of using nanofluid in phase change process of cooling fluid,” Int. J. Numeric. Methods Heat Fluid Flow, vol. 30, no. 6, pp. 2913–2934, Jan. 2020. DOI: 10.1108/HFF-12-2018-0806.
  • A. Akbari, S. A. Alavi Fazel, S. Maghsoodi, and A. S. Kootenaei, “Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids,” J. Therm. Anal. Calorim., vol. 135, no. 1, pp. 697–711, Jan. 2019. DOI: 10.1007/s10973-018-7182-2.
  • M. S. Kamel, M. S. Al-Agha, F. Lezsovits, and O. Mahian, “Simulation of pool boiling of nanofluids by using Eulerian multiphase model,” J. Therm. Anal. Calorim., vol. 142, no. 1, pp. 493–505, Oct. 2020. DOI: 10.1007/s10973-019-09180-x.
  • E. Çiftçi and A. Sözen, “Heat transfer enhancement in pool boiling and condensation using h-BN/DCM and SiO/DCM nanofluids: Experimental and numerical comparison,” Int. J. Numeric. Methods Heat Fluid Flow, vol. 31, no. 1, pp. 26–52, Jan. 2021. DOI: 10.1108/HFF-02-2020-0113.
  • S. K. Singh and D. Sharma, “Review of pool and flow boiling heat transfer enhancement through surface modification,” Int. J. Heat Mass Transf., vol. 181, pp. 122020, Dec. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.122020.
  • S. Zaboli, H. Alimoradi, and M. Shams, “Numerical investigation on improvement in pool boiling heat transfer characteristics using different nanofluid concentrations,” J. Therm. Anal. Calorim., vol. 147, no. 19, pp. 10659–10676, Mar. 2022. DOI: 10.1007/s10973-022-11272-0.
  • A. R. Harikrishnan, P. Dhar, P. K. Agnihotri, S. Gedupudi, and S. K. Das, “Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids,” Eur. Phys. J. E Soft Matter, vol. 40, no. 5, pp. 53, 2017. DOI: 10.1140/epje/i2017-11541-5.
  • A. R. Harikrishnan, P. Dhar, P. K. Agnihotri, S. Gedupudi, and S. K. Das, “Wettability of complex fluids and surfactant capped nanoparticle-induced quasi-universal wetting behavior,” J. Phys. Chem. B, vol. 121, no. 24, pp. 6081–6095, Jun. 2017. DOI: 10.1021/acs.jpcb.7b02723.
  • A. R. Harikrishnan, P. Dhar, S. Gedupudi, and S. K. Das, “Governing Influence of Thermodynamic and Chemical Equilibria on the Interfacial Properties in Complex Fluids,” J. Phys. Chem. B, vol. 122, no. 14, pp. 4141–4148, Apr. 2018. DOI: 10.1021/acs.jpcb.7b12008.
  • X. Li, K. Li, J. Tu, and J. Buongiorno, “On two-fluid modeling of nucleate boiling of dilute nanofluids,” Int. J. Heat Mass Transf., vol. 69, pp. 443–450, Feb. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.037.
  • P. I. Shyamkumar, S. Singh, A. Srivastava, and M. Visaria, “Numerical investigation of nucleate pool boiling heat transfer for different superheat conditions,” Heat Transf. Eng., vol. 43, no. 1, pp. 83–100, 2022. DOI: 10.1080/01457632.2020.1844450.
  • S. C. P. Cheung, S. Vahaji, G. H. Yeoh, and J. Y. Tu, “Modeling subcooled flow boiling in vertical channels at low pressures. I. Assessment of empirical correlations,” Int. J. Heat Mass Transf., vol. 75, pp. 736–753, Aug. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.016.
  • H. Salehi and F. Hormozi, “Numerical study of silica-water based nanofluid nucleate pool boiling by two-phase Eulerian scheme,” Heat Mass Transf., vol. 54, no. 3, pp. 773–784, Mar. 2018. DOI: 10.1007/s00231-017-2146-9.
  • M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE J., vol. 25, no. 5, pp. 843–855, Sep. 1979. DOI: 10.1002/aic.690250513.
  • X. Li, Y. Yuan, and J. Tu, “A parametric study of the heat flux partitioning model for nucleate boiling of nanofluids,” Int. J. Therm. Sci., vol. 98, pp. 42–50, Dec. 2015. DOI: 10.1016/j.ijthermalsci.2015.06.020.
  • M. Ishii, “Two-fluid model for two-phase flow,”Multiphase Sci. Technol., vol. 5, no. 1–4, pp. 1–63, 1990. DOI: 10.1615/MultScienTechn.v5.i1-4.10.
  • M. Lopez de Bertodano, R. T. Lahey, and O. C. Jones, “Turbulent bubbly two-phase flow data in a triangular duct,” Nucl. Eng. Des., vol. 146, no. 1-3, pp. 43–52, Feb. 1994. DOI: 10.1016/0029-5493(94)90319-0.
  • H. Alimoradi, S. Zaboli, and M. Shams, “Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid,” Korean J. Chem. Eng., vol. 39, no. 1, pp. 69–85, Jan. 2022. DOI: 10.1007/s11814-021-0895-0.
  • W. E. Ranz, “Evaporation from drops, Parts I & II,” Chem. Eng. Prog., vol. 48, pp. 141–146, 1952.
  • N. Kurul and M. Z. Podowski, “Multidimensional effects in forced convection subcooled boiling,” presented at the Proceedings of the 9th International Heat Transfer Conference, Jerusalem, Israel, vol. 2, pp. 21–26, 1990.
  • C. Gerardi, J. Buongiorno, L.-W. Hu, and T. McKrell, “Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video,” Int. J. Heat Mass Transf., vol. 53, no. 19-20, pp. 4185–4192, Sep. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.041.
  • A. Inbaoli, C. S. Sujith Kumar and S. Jayaraj, “A review on techniques to alter the bubble dynamics in pool boiling,” Appl. Therm. Eng., vol. 214, pp. 118805, Sept. 2022. DOI: 10.1016/j.applthermaleng.2022.118805.
  • S. J. Kim, I. C. Bang, J. Buongiorno and L. W. Hu, “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 4105–4116, Sept. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.002.
  • D.-S. Guo et al., “Numerical study on the behavior of vapor bubbles during boiling with surface acoustic wave (SAW),” Int. J. Heat Mass Transf., vol. 192, pp. 122928, Aug. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122928.
  • R. Cole and W. M. Rohsenow, “Correlation of bubble departure diameters for boiling of saturated liquids,” Chem. Eng. Prog. Symp. Ser., vol. 65, no. 92, pp. 211–213, 1969.
  • H. Alimoradi and M. Shams, “Optimization of subcooled flow boiling in a vertical pipe by using artificial neural network and multi objective genetic algorithm,” Appl. Therm. Eng., vol. 111, pp. 1039–1051, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.09.114.
  • K. Mondal and A. Bhattacharya, “Bubble dynamics and enhancement of pool boiling in presence of an idealized porous medium: a numerical study using lattice Boltzmann method,” J. Therm. Sci. Eng. Appl., vol. 14, no. 8, pp. 081004, Aug. 2022. DOI: 10.1115/1.4053054.
  • E. William, A. James, Jr., and S. Chickos, “Thermophysical properties of fluid systems” in NIST Chemistry WebBook, P. J. Linstrom and W. G. Mallard, Eds., NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, USA, 2022.
  • A. R. I. Ali and B. Salam, “A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application,” SN Appl. Sci., vol. 2, no. 10, pp. 1636, Oct. 2020. DOI: 10.1007/s42452-020-03427-1.
  • S. Nukiyama, “The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure,” Int. J. Heat Mass Transf., vol. 9, no. 12, pp. 1419–1433, 1966. DOI: 10.1016/0017-9310(66)90138-4.
  • W. M. Rohsenow, “A method of correlating heat-transfer data for surface boiling of liquids,” Trans. Am. Soc. Mech. Eng., vol. 74, no. 6, pp. 969–975, Aug. 1952. DOI: 10.1115/1.4015984.
  • I. L. Pioro, W. Rohsenow and S. S. Doerffer, “Nucleate pool-boiling heat transfer. II: assessment of prediction methods,” Int. J. Heat Mass Transf., vol. 47, no. 23, pp. 5045–5057, Nov. 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.06.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.