215
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental Study on Indirect Liquid Cooling Performance of Metal 3D-Printed Cold Plates for Battery Thermal Management

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon

References

  • L. Cheng and G. Xia, “High heat flux cooling technologies using microchannel evaporators: fundamentals and challenges,” Heat Transf. Eng., vol. 44, no. 16–18, p. 1470, 2023. DOI: 10.1080/01457632.2022.2140639.
  • T. I. C. Buidin and F. Mariasiu, “Battery thermal management systems: current status and design approach of cooling technologies,” Energies, vol.14, no. 16, p. 4879, 2021. DOI: 10.3390/en14164879.
  • Y. Yang, J. Wu, X. Song, and Z. Gu, “Thermal management performance of lithium-ion battery using supercritical CO2 as cooling fluid,” Heat Transf. Eng., vol. 44, no. 15, 2023 (in press). DOI: 10.1080/01457632.2022.2134082.
  • S. G. Kandlikar and C. N. Hayner II, “Liquid cooled cold plates for industrial high-power electronic devices—thermal design and manufacturing considerations,” Heat Transf. Eng., vol. 30, no. 12, pp. 918–930, 2009. DOI: 10.1080/01457630902837343.
  • J. Kim, J. Oh, and H. Lee, “Review on battery thermal management system for electric vehicles,” Appl. Therm. Eng., vol. 149, pp. 192–212, Feb. 2019. DOI: 10.1016/j.applthermaleng.2018.12.020.
  • A. Salimi, M. Khoshvaght-Aliabadi, and S. Rashidi, “On thermal management of pouch type lithium-ion batteries by novel designs of wavy minichannel cold plates: comparison of co-flow with counter-flow,” J. Energy Storage, vol. 52, part B, p. 104819, Aug. 2022. DOI: 10.1016/j.est.2022.104819.
  • H. Ma, L. Su, B. He, D. He, and Y. Kang, “New design of u-turn type minichannel cold plate with hybrid fins for high temperature uniformity,” Int. Commun. Heat Mass Transf., vol. 135, p. 106078, Jun. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106078.
  • M. Akbarzadeh et al., “Experimental and numerical thermal analysis of a lithium-ion battery module based on a novel liquid cooling plate embedded with phase change material,” J. Energy Storage, vol. 50, p. 104673, Jun. 2022. DOI: 10.1016/j.est.2022.104673.
  • J. Cao et al., “Mini-channel cold plate with nano phase change material emulsion for li-ion battery under high-rate discharge,” Appl. Energy, vol. 279, p. 115808, Dec. 2020. DOI: 10.1016/j.apenergy.2020.115808.
  • R. Sun et al., “A novel concept methodology of in-direct cold plate liquid cooling design for data center in CPU socket area,” in 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, Jul. 2020, pp. 471–421. DOI: 10.1109/ITherm45881.2020.9190567.
  • N. I. Om, R. Zulkifli, and P. Gunnasegaran, “Influence of the oblique fin arrangement on the fluid flow and thermal performance of liquid cold plate,” Case Stud. Therm. Eng., vol. 12, pp. 717–727, Sep. 2018. DOI: 10.1016/j.csite.2018.09.008.
  • O. Kalkan, A. Celen, K. Bakirci, and A. S. Dalkilic, “Experimental investigation of thermal performance of novel cold plate design used in a li-ion pouch-type battery,” Appl. Therm. Eng., vol. 191, p. 116885, Jun. 2021. DOI: 10.1016/j.applthermaleng.2021.116885.
  • S. A. Nada, R. El-Zoheiry, M. Elsharnoby, and O. S. Osman, “Enhancing the thermal performance of different flow configuration minichannel heat sink using al2o3 and cuo-water nanofluids for electronic cooling: an experimental assessment,” Int. J. Therm. Sci., vol. 181, p. 107767, Nov. 2022. DOI: 10.1016/j.ijthermalsci.2022.107767.
  • H. Li, X. Ding, D. Jing, M. Xiong, and F. Meng, “Experimental and numerical investigation of liquid-cooled heat sinks designed by topology optimization,” Int. J. Therm. Sci., vol. 146, p. 106065, Dec. 2019. DOI: 10.1016/j.ijthermalsci.2019.106065.
  • S. Ki et al., “A bio-inspired, low pressure drop liquid cooling system for high-power igbt modules for EV/HEV applications,” Int. J. Therm. Sci., vol. 161, p. 106708, Mar. 2021. DOI: 10.1016/j.ijthermalsci.2020.106708.
  • Y. Li, L. Gong, B. Ding, M. Xu, and Y. Joshi, “Thermal management of power electronics with liquid cooled metal foam heat sink,” Int. J. Therm. Sci., vol. 163, p. 106796, May 2021. DOI: 10.1016/j.ijthermalsci.2020.106796.
  • D. Xu, Y. Fang, L. Hu, W. Yang, and L. Su, “Experimental investigation on thermal performance of a pumped two-phase battery cooling system using mini-channel cold plate,” Int. J. Energy Res., vol. 45, no. 11, pp. 16078–16090, Sep. 2021. DOI: 10.1002/er.6837.
  • Q. Ren, H. Yu, Y. Liu, and Z. Wang, “The investigation of the silicon fabricated balanced shunt micro pin fins cold plate for high heat flux devices,” in 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, Sep. 2020, pp. 950–956. DOI: 10.1109/ITherm45881.2020.9190295.
  • E. M. Sparrow, P. W. Chevalier, and J. P. Abraham, “The design of cold plates for the thermal management of electronic equipment,” Heat Transf. Eng., vol. 27, no. 7, pp. 6–16, 2006. DOI: 10.1080/01457630600742308.
  • X. Li et al., “Assessing the environmental benefits of battery packs from multi-vehicle and multi-region perspective: aiming for lightweight and carbon neutrality,” Environ. Prog. Sustain. Energy, vol. 41, no. 6, p. e13892, Nov.–Dec. 2022. DOI: 10.1002/ep.13892.
  • B. M. Nafis, R. Whitt, A.-C. Iradukunda, and D. Huitink, “Additive manufacturing for enhancing thermal dissipation in heat sink implementation: a review,” Heat Transf. Eng., vol. 42, no. 12, pp. 967–984, 2021. DOI: 10.1080/01457632.2020.1766246.
  • D. C. Deisenroth et al., “Review of heat exchangers enabled by polymer and polymer composite additive manufacturing,” Heat Transf. Eng., vol. 39, no. 19, pp. 1648–1664, 2018. DOI: 10.1080/01457632.2017.1384280.
  • M. Al-Zareer, “Numerical study of flow and heat transfer performance of 3D-printed polymer-based battery thermal management,” Int. J. Heat Mass Transf., vol. 158, p. 11995, Sep. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119995.
  • C. B. Dokken and B. M. Fronk, “Optimization of 3d printed liquid cooled heat sink designs using a micro-genetic algorithm with bit array representation,” Appl. Therm. Eng., vol. 143, pp. 316–325, Oct. 2018. DOI: 10.1016/j.applthermaleng.2018.07.113.
  • U. Chowdhury, A. Siddarth, M. Sahini, and D. Agonafer, “Raising Inlet air temperature for a hybrid-cooled server retrofitted with liquid cooled cold plates,” in: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2018, p. V08BT10A044. DOI: 10.1115/IMECE2018-88497.
  • B. B. Kanbur et al., “High-temperature cooling via metal 3d-printed cold plates for battery thermal management,” in: International Conference on Materials & Energy (ICOME 2022), 2022.
  • B. B. Kanbur et al., “Metal additive manufacturing of plastic injection molds with conformal cooling channels,” Polymers, vol. 14, no. 3, p. 424, Jan. 2022. DOI: 10.3390/polym14030424.
  • T. Özdemir, A. Amini, Ö. Ekici, and M. Köksal, “Experimental assessment of the lumped lithium ion battery model at different operating conditions,” Heat Transf. Eng., vol. 43, no. 3–5, pp. 314–325, 2022. DOI: 10.1080/01457632.2021.1874666.
  • F. He and L. Ma, “Thermal management in hybrid power systems using cylindrical and prismatic battery cells,” Heat Transf. Eng., vol. 37, no. 6, pp. 581–590, 2016. DOI: 10.1080/01457632.2015.1060776.
  • L. Ma, “Nonintrusive and multidimensional optical diagnostics and their applications in the study of thermal-fluid systems,” Heat Transf. Eng., vol. 37, no. 3–4, pp. 359–368, 2016. DOI: 10.1080/01457632.2015.1052713.
  • W. Jiang, J. Zhao, and Z. Rao, “Thermal performance enhancement and prediction of narrow liquid cooling channel for battery thermal management,” Int. J. Therm. Sci., vol. 171, p. 107250, Jan. 2022. DOI: 10.1016/j.ijthermalsci.2021.107250.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, Jan. 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • F. Ladeinde et al., “Experimental measurements and mathematical modeling of cold plate for aviation thermal management,” Int. J. Heat Mass Transf., vol. 191, no. 1, p. 122810, Aug. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122810.
  • A. Vaisi, K. Javaherdeh, and R. Moosavi, “Experimental investigation of the thermal performance in a single-component two-phase flow in multistream multi-fluid plate-fin heat exchangers,” Int. J. Therm. Sci., vol. 171, p. 107194, Jan. 2022. DOI: 10.1016/j.ijthermalsci.2021.107194.
  • R. K. Shah and D. P. Sekulić, Fundamentals of Heat Exchanger Design. Hoboken, NJ: John Wiley Sons, 2003. DOI: 10.1002/9780470172605.
  • R. Shah and A. London, Laminar Flow Forced Convection in Ducts. New York, NY: Academic Press, 1978. DOI: 10.1016/B978-0-12-020051-1.50022-X.
  • N. Sahiti, F. Durst, and A. Dewan, “Strategy for selection of elements for heat transfer enhancement,” Int. J. Heat Mass Transf., vol. 49, no. 19–20, pp. 3392–3400, Sep. 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.03.011.
  • R. L. Webb and N.-H. Kim, Principles of Enhanced Heat Transfer. New York, NY: Garland Science, 2004. DOI: 10.1201/b12413.
  • W. Zuo et al., “Performance comparison between single s-channel and double s-channel cold plate for thermal management of a prismatic LiFePO4 battery,” Renew. Energy, vol. 192, pp. 46–57, Jun. 2022. DOI: 10.1016/j.renene.2022.04.116.
  • X. Pang, Y. Huo, H. Fang, and Z. Rao, “Analysis of temperature uniformity of electric vehicle battery system with swirling flow strengthened heat transfer,” Appl. Therm. Eng., vol. 193, p. 116995, Jul. 2021. DOI: 10.1016/j.applthermaleng.2021.116995.
  • Z. Chen, S. Yang, M. Pan, and J. Xu, “Experimental investigation on thermal management of lithium-ion battery with roll bond liquid cooling plate,” Appl. Therm. Eng., vol. 206, p. 118106, Apr. 2022. DOI: 10.1016/j.applthermaleng.2022.118106.
  • J. Fu et al., “Effect of an impinging jet on the flow characteristics and thermal performance of mainstream in battery cooling of hybrid electric vehicles,” Int. J. Heat Mass Transf., vol. 183, part C, pp. 122206, Feb. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122206.
  • A. M. Bayomy, M. Z. Saghir, and T. Yousefi, “Electronic cooling using water flow in aluminum metal foam heat sink: experimental and numerical approach,” Int. J. Heat Mass Transf., vol. 109, pp. 182–200, Nov. 2016. DOI: 10.1016/j.ijthermalsci.2016.06.007.
  • Q. Le et al., “Numerical investigation on manifold immersion cooling scheme for lithium ion battery thermal management application,” Int. J. Heat Mass Transf., vol. 190, p. 122750, Jul. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122750.
  • R. van Erp, G. Kampitsis, and E. Matioli, “Efficient microchannel cooling of multiple power devices with compact flow distribution for high power-density converters,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7235–7245, Jul. 2020. DOI: 10.1109/TPEL.2019.2959736.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.