476
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

ZnO nanoparticles: recent advances in ecotoxicity and risk assessment

, , , , , & show all
Pages 322-333 | Received 16 Feb 2018, Accepted 30 Jul 2018, Published online: 28 Sep 2018

References

  • Adamcakova-Dodd, A., et al., 2014. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Particle and Fibre Toxicology, 11 (1), 15.
  • Adams, L.K., et al., 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40 (19), 3527–3532.
  • Ahamed, M., et al., 2011. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine, 7 (6), 904–913.
  • Akhtar, M.J., et al., 2012. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845–857.
  • Andersson-Willman, B., et al., 2012. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicology and Applied Pharmacology, 264 (1), 94–103.
  • Baek, M., et al., 2012. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. International Journal of Nanomedicine, 7, 3081–3097.
  • Beckett, W.S., et al., 2005. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. American Journal of Respiratory and Critical Care Medicine, 171 (10), 1129–1135.
  • Ben-Moshe, T., et al., 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere, 81 (3), 387–393.
  • Blinova, I., et al., 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution (Barking, Essex: 1987), 158 (1), 41–47.
  • Boxall, A., et al., 2007. Current and future predicted environmental exposure to engineered nanoparticles. York: Central Science Laboratory.
  • Buerki-Thurnherr, T., et al., 2013. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology, 7 (4), 402–416.
  • Buzea, C., et al., 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2 (4), MR17–MR71.
  • Chang, H., et al., 2013. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 65 (6), 887–896.
  • Chen, J.K., et al., 2015. Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice. Nanotoxicology, 9 (1), 43–53.
  • Chen, R., et al., 2014. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano, 8 (3), 2562–2574.
  • Cho, W.S., et al., 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environmental Health Perspectives, 118 (12), 1699–1706.
  • Cho, W.S., et al., 2011. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Particle and Fibre Toxicology, 8 (1), 16–27.
  • Cho, W.S., et al., 2012. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo: zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology, 6 (1), 22–35.
  • Cho, W.S., et al., 2013. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Particle and Fibre Toxicology, 10 (1), 9.
  • Cho, Y., et al., 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265 (5170), 346–355.
  • Chuang, H.C., et al., 2014. Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology, 8 (6), 593–604.
  • Chupani, L., et al., 2018. Insight into the modulation of intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnOnanoparticles. Science of the Total Environment., 613–614, 62–71.
  • Cohen, J.M., et al., 2014. Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro. Nanotoxicology, 8 (suppl. 1), 216–225.
  • De Berardis, B., et al., 2010. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicology and Applied Pharmacology, 246 (3), 116–127.
  • Dimkpa, C.O., et al., 2011. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environmental Pollution (Barking, Essex: 1987), 159 (7), 1749–1756.
  • Durán, N., et al., 2010. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society, 21 (6), 949–959.
  • Eisen, E.A., et al., 2011. Epidemiologic challenges for studies of occupational exposure to engineered nanoparticles: a commentary. Journal of Occupational and Environmental Medicine, 53, S57–S61.
  • Esmaeillou, M., et al., 2013. Toxicity of ZnO nanoparticles in healthy adult mice. Environmental Toxicology and Pharmacology, 35 (1), 67–71.
  • Fan, Z., and Lu, J.G., 2005. Zinc oxide nanostructures: synthesis and properties. Journal of Nanoscience and Nanotechnology, 5 (10), 1561–1573.
  • Farnebo, M., et al., 2010. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochemical and Biophysical Research Communications, 396 (1), 85–89.
  • Franklin, N.M., et al., 2007. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41 (24), 8484–8490.
  • Fukui, H., et al., 2012. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chemico-Biological Interactions, 198 (1–3), 29–37.
  • Goncalves, D.M., and Girard, D., 2014. Zinc oxide nanoparticles delay human neutrophil apoptosis by a de novo protein synthesis dependent and reactive oxygen species-independent mechanism. Toxicology In Vitro, 28 (5), 926–931.
  • Gopalan, R.C., et al., 2009. The effect of zinc oxide and titanium dioxide nanoparticles in the Comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology, 3 (1), 33–39.
  • Gottschalk, F., et al., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology, 43 (24), 9216–9222.
  • Hackenberg, S., et al., 2011. Repetitive exposure to zinc oxide nanoparticles induces and damage in human nasal mucosa mini organ cultures. Environmental and Molecular Mutagenesis, 52 (7), 582–589.
  • Hanley, C., et al., 2009. The Influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Research Letters, 4 (12), 1409–1420.
  • Hao, L., and Chen, L., 2012. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety, 80, 103–110.
  • Hendren, C.O., et al., 2011. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environmental Science & Technology, 45 (9), 4190–2569.
  • Heinlaan, M., et al., 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71 (7), 1308–1316.
  • Heng, B.C., et al., 2011. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Archives of Toxicology, 85 (12), 1517–1528.
  • Hillegass, J.M., et al., 2010. Assessing nanotoxicity in cells in vitro. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2 (3), 219–231.
  • Hong, T.K., et al., 2013. A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. Journal of Materials Chemistry B, 1 (23), 2985–2992.
  • Hsiao, I.L., and Huang, Y.J., 2011. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Science of the Total Environment, 409 (7), 1219–1228.
  • Hsiao, I.L., and Huang, Y.J., 2013. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles. Journal of Nanoparticle Research, 15, 1829.
  • Huang, C., et al., 2010. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology in Vitro, 24 (1), 45–55.
  • Hu, C.W., et al., 2010. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biochemistry, 42 (4), 586–591.
  • Jain, S., et al., 2013. Pulmonary fibrotic response to inhalation of ZnO nanoparticles and toluene co-exposure through directed flow nose only exposure chamber. Inhalation Toxicology, 25 (13), 703–7691.
  • Jain, A., et al., 2013. Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Materials Science and Engineering, 33 (3), 1247–1253.
  • Jeong, S.H., et al., 2013. ZnO nanoparticles induce TNF-α expression via ROS-ERK-Egr-1 pathway in human keratinocytes. Journal of Dermatological Science, 72 (3), 263–273.
  • Jiang, W., et al., 2009. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157 (5), 1619–1625.
  • Jiang, X., et al., 2012a. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. Journal of Colloid and Interface Science, 386 (1), 34–43.
  • Jiang, X., et al., 2012b. Transport and deposition of ZnO nanoparticles in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401, 29–37.
  • Jo, E., et al., 2013. Exposure to zinc oxide nanoparticles affects reproductive development and biodistribution in offspring rats. The Journal of Toxicological Sciences, 38 (4), 525–530.
  • Jones, N., et al., 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279 (1), 71–76.
  • Juang, Y.M., et al., 2014. Changes in protein expression in rat ronchoalveolar lavage flid after exposure to zinc oxide nanoparticles:an iTRAQ proteomic approach. Rapid Communications in Mass Spectrometry, 28 (8), 974–980.
  • Kahru, A. and Dubourguier, H., 2010. From ecotoxicology to nanoecotoxicology. Toxicology, 269 (2–3), 105–119.
  • Kao, Y.Y., et al., 2012. Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. Journal of Molecular Neuroscience, 48 (2), 464–471.
  • Khosravi-Katuli, K., et al., 2018. Effects of ZnO nanoparticles in the Caspian roach (Rutilus caspicus). The Science of the Total Environment, 626, 30–41.
  • Konduru, N., et al., 2014. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Particle and Fibre Toxicology, 11 (1), 44.
  • Kool, P.L., et al., 2011. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil . Environmental Pollution (Barking, Essex: 1987), 159 (10), 2713–2719.
  • Kumari, L., and Li, W.Z., 2010. Synthesis, structure and optical properties of zinc oxide hexagonal microprisms. Crystal Research and Technology, 45 (3), 311–315.
  • Lam, H.F., et al., 1985. Functional and morphologic changes in the lungs of guinea pigs exposed to freshly generated ultrafine zinc oxide. Toxicology and Applied Pharmacology, 78 (1), 29–38.
  • Landsiede, R., et al., 2014. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Particle and Fibre Toxicology, 11, 16.
  • Lanone, S., and Boczkowski, J., 2006. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Current Molecular Medicine, 6 (6), 651–663.
  • Lee, C.M., et al., 2012. Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. International Journal of Nanomedicine, 7, 3203–3209.
  • Lin, W.S., et al., 2009. Toxicity of nano- and microsized ZnO particles in human lung epithelial cells. Journal of Nanoparticle Research, 11 (1), 25–39.
  • Liu, J.H., et al., 2017. Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation. Toxicology Research, 6 (2), 134–143.
  • Ma, H., et al., 2011. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environmental Pollution, 159 (6), 1473–1480.
  • Ma, H., et al., 2012. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. Environmental Toxicology and Chemistry, 31 (7), 1621–1629.
  • Mansouri, B., et al., 2018. Effects of waterborne ZnO nanoparticles and Zn2+ ions on the gills of rainbow trout (Oncorhynchus mykiss): bioaccumulation, histopathological and ultrastructural changes. Turkish Journal of Fisheries and Aquatic Sciences, 18 (5), 739–746.
  • Manzo, S., et al., 2011. Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environmental Science and Pollution Research, 18 (5), 756–763.
  • Meyer, K., et al., 2011. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicology in Vitro: An International Journal Published in Association with Bibra, 25 (8), 1721–1726.
  • Miller, R.J., et al., 2010. Impacts of metal oxide nanoparticles on marine phytoplankton. Environmental Science & Technology, 44 (19), 7329–7334.
  • Mocan, T., et al., 2010. Implications of oxidative stress mechanisms in toxicity of nanoparticles (review). Acta Physiologica Hungarica, 97 (3), 247–255.
  • Monteiro-Riviere, N.A., et al., 2011. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicological Sciences, 123 (1), 264–280.
  • Nair, S., et al., 2009. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 20 (S1), 235–S245.
  • Ng, K.W., et al., 2011. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials, 32 (32), 8218–8225.
  • Osmond, M.J., and McCall, M.J., 2010. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology, 4 (1), 15–41.
  • Papaharalambus, C.A. and Griendling, K.K., 2007. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends in Cardiovascular Medicine, 17 (2), 48–54.
  • Pasquini, L.M., et al., 2012. Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environmental Science & Technology, 46 (11), 6297–6305.
  • Pasupuleti, S., et al., 2012. Toxicity of zinc oxide nanoparticles through oral route. Toxicology and Industrial Health, 28 (8), 675–686.
  • Phillips, J.I., et al., 2010. Pulmonary and systemic toxicity following exposure to nickel nanoparticles. American Journal of Industrial Medicine, 53, 763–767.
  • Premanathan, M., et al., 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology, and Medicine, 7 (2), 184–192.
  • Pujalte, I., et al., 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology, 8, 10.
  • Revell, P.A., 2006. The biological effects of nanoparticles. Nanotechnology Perceptions, 2, 283–298.
  • Ray, P.D., et al., 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24 (5), 981–990.
  • Rhomberg, L.R., et al., 2013. A survey of frameworks for best practices in weight-of-evidence analyses. Critical Reviews in Toxicology, 43 (9), 753–784.
  • Rousk, J., et al., 2012. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One, 7 (3), e34197.
  • Roy, R., et al., 2014. Toll-like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages. Immunology, 142 (3), 453–464.
  • Ryman-Rasmussen, J.P., et al., 2007. Influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Letters, 7 (5), 1344–1348.
  • Sahu, D., et al., 2014. Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. Journal of Toxicology and Environmental Health, Part A, 77 (4), 177–191.
  • Sahu, D., et al., 2013. Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicology, 2013, 316075.
  • Saptarshi, S.R., et al., 2015. Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. Journal of Nanobiotechnology, 13 (1), 6.
  • Sávoly, Z., et al., 2016. Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects. Environmental Science and Pollution Research, 23 (10), 9669–9678.
  • Sayes, C.M., et al., 2007. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sciences, 97 (1), 163–180.
  • Setyawati, M.L., et al., 2015. Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small (Weinheim an Der Bergstrasse, Germany), 11 (28), 3458–3468.
  • Sharma, V., et al., 2009. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters, 185 (3), 211–218.
  • Sharma, V., et al., 2012. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, 17 (8), 852–870.
  • Sharma, V., et al., 2012. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research, 745 (1–2), 84–91.
  • Shi, J., et al., 2012. Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano, 6 (3), 1925–1938.
  • Shrivastava, R., et al., 2014. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug and Chemical Toxicology, 37 (3), 336–347.
  • Song, W., et al., 2010. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicology Letters, 199 (3), 389–397.
  • Su, G., et al., 2015. Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach. Environmental Science and Pollution Research, 22 (22), 17434–17442.
  • Suh, K.S., et al., 2013. Effect of zinc oxide nanoparticles on the function of MC3T3-E1 osteoblastic cells. Biological Trace Element Research, 155 (2), 287–294.
  • Su, Y.K., et al., 2010. Ultraviolet ZnO nanorod photosensors. Langmuir: The ACS Journal of Surfaces and Colloids, 26 (1), 603–606.
  • Tuomela, S., et al., 2013. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One, 8 (7), e68415.
  • Uzar, N.K., et al., 2015. Zinc oxide nanoparticles induced cyto- and genotoxicity in kidney epithelial cells. Toxicology Mechanisms and Methods, 25 (4), 334–339.
  • Wang, B., et al., 2006. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicology Letters, 161 (2), 115–123.
  • Wang, B., et al., 2008. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research, 10 (2), 263–276.
  • Wang, Y., et al., 2015. Excess titaniumdioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes. Nanoscale, 7 (30), 13105–13115.
  • Wang, Z.L., 2004. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 16 (25), R829–R858.
  • Warheit, D.B., et al., 2009. Nanoscale and fie zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environmental Science & Technology, 43 (20), 7939–7945.
  • Wilhelmi, V., et al., 2013. Zinc Oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One, 8 (6), e65704.
  • Wong, S.W.Y., et al., 2010. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry, 396 (2), 609–618.
  • Xia, T.A., et al., 2011. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano, 5 (2), 1223–1235.
  • Xiong, D., et al., 2011. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of The Total Environment, 409 (8), 1444–1452.
  • Yang, X., et al., 2015. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicology Letters, 234 (1), 40–49.
  • Yin, H., et al., 2010. Surface modifications of ZnO nanoparticles and their cytotoxicity. Journal of Nanoscience and Nanotechnology, 10 (11), 7565–7570.
  • Yu, R., et al., 2016. Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures. Environmental Science and Pollution Research, 23 (13), 13023–13034.
  • Zhang, C., et al., 2016. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: attention to the accumulation of intracellular Zn. Aquatic Toxicology, 178, 158–164.
  • Zhao, J.X., et al., 2012. Involvement of reactive oxygen species and high-voltage-activated calcium currents in nanoparticle zinc oxide-induced cytotoxicity in vitro. Journal of Nanoparticle Research, 14 (11), 1238.
  • Zhao, X., et al., 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology, 136–137, 49–59.
  • Zhao, X.S., et al., 2016. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquatic Toxicology, 180, 56–70.
  • Zvyagin, A., et al., 2008. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. Journal of Biomedical Optics, 13 (6), 064031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.