145
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Neurotoxicity of poly(propylene imine) glycodendrimers

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1484-1492 | Received 23 Apr 2020, Accepted 20 Oct 2020, Published online: 13 Nov 2020

References

  • Akbar, U. and Ashizawa, T., 2015. Ataxia. Neurologic Clinics, 33 (1), 225–248.
  • Albertazzi, L., et al., 2013. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Molecular Pharmaceutics, 10 (1), 249–260.
  • Aliev, G., et al., 2019. Alzheimer’s disease – future therapy based on dendrimers. Current Neuropharmacology, 17 (3), 288–294.
  • Andreozzi, E., et al., 2017. Interactions of nitroxide-conjugated and non-conjugated glycodendrimers with normal and cancer cells and biocompatibility studies. Bioconjugate Chemistry, 28 (2), 524–538.
  • Appelhans, D., et al., 2015. Dendritic glyco architectures – from h-bond-driven molecular interactions to their potential use in brain disease therapy. In: C.R. Becer and L. Hartmann, eds. Glycopolymer code: synthesis of glycopolymers and their applications. Dresden, Germany: Royal Society of Chemistry, 149–177.
  • Appelhans, D., et al., 2010. Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466 (2117), 1489–1513.
  • Ashizawa, T. and Xia, G., 2016. Ataxia. Continuum (Minneapolis, Minn), 22 (4 Movement Disorders), 1208–1226.
  • Aso, E., et al., 2019. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine: Nanotechnology, Biology, and Medicine, 17, 198–209.
  • Bodewein, L., et al., 2016. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicology and Applied Pharmacology, 305, 83–92.
  • Chen, L., et al., 2013. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials, 34 (38), 10172–10181.
  • Dillman, R.O. and Hendrix, C.S., 2003. Unique aspects of supportive care using monoclonal antibodies in cancer treatment. Supportive Cancer Therapy, 1 (1), 38–48.
  • Doessegger, L. and Banholzer, M.L., 2015. Clinical development methodology for infusion-related reactions with monoclonal antibodies. Clinical & Translational Immunology, 4 (7), e39.
  • Duncan, R. and Izzo, L., 2005. Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 57 (15), 2215–2237.
  • Dwivedi, N., et al., 2016. Dendrimer-mediated approaches for the treatment of brain tumor. Journal of Biomaterials Science. Polymer Edition, 27 (7), 557–580.
  • Fan, Y., et al., 2020. Targeted tumor hypoxia dual‐mode CT/MR imaging and enhanced radiation therapy using dendrimer‐based nanosensitizers. Advanced Functional Materials, 30 (13), 1909285.
  • Fischer, M., et al., 2010. Influence of surface functionality of poly(propylene imine) dendrimers on protease resistance and propagation of the scrapie prion protein. Biomacromolecules, 11 (5), 1314–1325.
  • Franciosi, S., et al., 2017. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Autonomic Neuroscience: Basic & Clinical, 205, 1–11.
  • Franiak-Pietryga, I., et al., 2016. Dendrimer-based nanoparticles for potential personalized therapy in chronic lymphocytic leukemia: targeting the BCR-signaling pathway. International Journal of Biological Macromolecules, 88, 156–161.
  • Franiak-Pietryga, I., et al., 2017a. Blockage of Wnt/β-catenin signaling by nanoparticles reduces survival and proliferation of CLL cells in vitro-preliminary study. Macromolecular Bioscience, 17 (11), 1700130.
  • Franiak-Pietryga, I., et al., 2017b. PPI-G4 glycodendrimers upregulate TRAIL-induced apoptosis in chronic lymphocytic leukemia cells. Macromolecular Bioscience, 17 (5), 1600169.
  • Franiak-Pietryga, I., et al., 2018a. Affecting NF-κB cell signaling pathway in chronic lymphocytic leukemia by dendrimers-based nanoparticles. Toxicology and Applied Pharmacology, 357, 33–38.
  • Franiak-Pietryga, I., et al., 2018b. Dendrimers as drug nanocarriers: the future of gene therapy and targeted therapies in cancer. In: C.M. Simonescu, ed. Dendrimers – fundamentals and applications. London: IntechOpen, 7–27.
  • Franiak-Pietryga, I., et al., 2020. Maltotriose-modified poly(propylene imine) glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicology and Applied Pharmacology, 403, 115139.
  • Franiak-Pietryga, I., et al., 2017c. Glycodendrimer PPI as a potential drug in chronic lymphocytic leukaemia. The influence of glycodendrimer on apoptosis in in vitro B-CLL cells defined by microarrays. Anti-Cancer Agents in Medicinal Chemistry, 17 (1), 102–114.
  • Franiak-Pietryga, I., et al., 2013. The influence of maltotriose-modified poly(propylene imine) dendrimers on the chronic lymphocytic leukemia cells in vitro: dense shell G4 PPI. Molecular Pharmaceutics, 10 (6), 2490–2501.
  • Fröhlich, E., 2012. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 7, 5577–5591.
  • Fu, P.P., et al., 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis, 22 (1), 64–75.
  • Gagliardi, M., 2017. Recent advances in preclinical studies and potential applications of dendrimers as drug carriers in the central nervous system. Current Pharmaceutical Design, 23 (21), 3105–3119.
  • Ghuran, A. and Nolan, J., 2000. The cardiac complications of recreational drug use. The Western Journal of Medicine, 173 (6), 412–415.
  • Ha, S.W., Neale Weitzmann, M., and Beck, G.R., 2014. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano, 8 (6), 5898–5910.
  • Hammer, B.A.G., et al., 2017. Controlling cellular uptake and toxicity of polyphenylene dendrimers by chemical functionalization. Chembiochem, 18 (10), 960–964.
  • Hussain, S., et al., 2012. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano, 6 (7), 5820–5829.
  • Hussain, S. and Garantziotis, S., 2013. Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy, 9 (1), 101–103.
  • Jain, M.V., et al., 2013. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. Journal of Cellular and Molecular Medicine, 17 (1), 12–29.
  • Jalife, J., 2000. Ventricular fibrillation: mechanisms of initiation and maintenance. Annual Review of Physiology, 62, 25–50.
  • Janaszewska, A., et al., 2012. The biodistribution of maltotriose modified poly(propylene imine) (PPI) dendrimers conjugated with fluorescein—proofs of crossing blood–brain-barrier. New Journal of Chemistry, 36 (2), 350–353.
  • Janeczek, A., et al., 2018. Marijuana intoxication in a cat. Acta Veterinaria Scandinavica, 60, 44.
  • Jones, C.F., et al., 2012. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano, 6 (11), 9900–9910.
  • Kavoosi, F., et al., 2018. Medical and dental applications of nanomedicines. APMIS, 126 (10), 795–803.
  • Khan, M.I., et al., 2012. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials, 33 (5), 1477–1488.
  • Klajnert, B., et al., 2008. The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: new effects dependent on hydrogen bonding. Chemistry (Weinheim an Der Bergstrasse, Germany), 14 (23), 7030–7041.
  • Klementieva, O., et al., 2013. Effect of poly(propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer's disease. Biomacromolecules, 14 (10), 3570–3580.
  • Klementieva, O., et al., 2011. Dense shell glycodendrimers as potential nontoxic anti-amyloidogenic agents in Alzheimer's disease. Amyloid-dendrimer aggregates morphology and cell toxicity. Biomacromolecules, 12 (11), 3903–3909.
  • Kulig, B.M., 1996. Comprehensive neurotoxicity assessment. Environmental Health Perspectives, 104 (Suppl. 2), 317–322.
  • Le Heron, C., Apps, M.A.J., and Husain, M., 2018. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia, 118 (Pt B), 54–67.
  • Lenz, H.-J., 2007. Management and preparedness for infusion and hypersensitivity reactions. The Oncologist, 12 (5), 601–609.
  • Leroueil, P.R., et al., 2008. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Letters, 8 (2), 420–424.
  • Leroueil, P.R., et al., 2007. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Accounts of Chemical Research, 40 (5), 335–342.
  • Levine, B. and Kroemer, G., 2008. Autophagy in the pathogenesis of disease. Cell, 132 (1), 27–42.
  • Li, C., et al., 2009. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. Journal of Molecular Cell Biology, 1 (1), 37–45.
  • Manke, A., Wang, L., and Rojanasakul, Y., 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013, 942916.
  • Mizushima, N., 2007. Autophagy: process and function. Genes & Development, 21 (22), 2861–2873.
  • Mkandawire, M., et al., 2009. Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. Journal of Biophotonics, 2 (10), 596–606.
  • NIDA, 2018. Drugs, brains, and behavior: the science of addiction. Available from: https://www.drugabuse.gov/publications/drugs-brains-behavior-science-addiction/drugs-brain
  • Palmerston Mendes, L., Pan, J., and Torchilin, V., 2017. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 22 (9), 1401.
  • Robinson, S., et al., 2009. Guidance on dose level selection for regulatory general toxicology studies for pharmaceuticals. London, UK: National Centre for the Replacement, Refinement and Reduction of Animals in Research.
  • Roy, R., et al., 2014. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicology Letters, 227 (1), 29–40.
  • Sebestik, J., et al., 2012. Dendrimers in neurodegenerative diseases. In: J. Sebestik, M. Reinis, and J. Jezek, eds. Biomedical applications of peptide-, glyco- and glycopeptide dendrimers, and analogous dendrimeric structures. Vienna: Springer, 209–221.
  • Shcharbin, D., et al., 2014. How to study dendrimers and dendriplexes. III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release, 181, 40–52.
  • Shoichet, M. S., et al., 2008. Strategies for regeneration and repair in the injured central nervous system. In: W. Reichert, ed. Indwelling neural implants: strategies for contending with the in vivo environment. Boca Raton, FL: CRC Press/Taylor & Francis.
  • Siena, S., et al., 2010. Reduced incidence of infusion-related reactions in metastatic colorectal cancer during treatment with cetuximab plus irinotecan with combined corticosteroid and antihistamine premedication. Cancer, 116 (7), 1827–1837.
  • Song, W., et al., 2014. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano, 8 (10), 10328–10342.
  • Stern, S.T. and Johnson, D.N., 2008. Role for nanomaterial–autophagy interaction in neurodegenerative disease. Autophagy, 4 (8), 1097–1100.
  • Szulc, A., et al., 2016. Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance. International Journal of Pharmaceutics, 513 (1–2), 572–583.
  • Szulc, A., et al., 2015. Maltose modified poly(propylene imine) dendrimers as potential carriers of nucleoside analog 5′-triphosphates. International Journal of Pharmaceutics, 495 (2), 940–947.
  • Teleanu, D.M., et al., 2019. Neurotoxicity of nanomaterials: an up-to-date overview. Nanomaterials, 9 (1), 96–110.
  • Teleanu, D.M., et al., 2018. Impact of nanoparticles on brain health: an up to date overview. Journal of Clinical Medicine, 7 (12), 490–504.
  • Tomalia, D.A., et al., 1985. A new class of polymers: starburst-dendritic macromolecules. Polymer Journal, 17 (1), 117–132.
  • Wan, B., et al., 2013. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicology Letters, 221 (2), 118–127.
  • Wang, S., et al., 2014. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials, 35 (26), 7588–7597.
  • Xiong, Z., et al., 2016. Gd-chelated poly(propylene imine) dendrimers with densely organized maltose shells for enhanced MR imaging applications. Biomaterials Science, 4 (11), 1622–1629.
  • Xu, X., et al., 2019. A multifunctional low-generation dendrimer-based nanoprobe for the targeted dual mode MR/CT imaging of orthotopic brain gliomas. Journal of Materials Chemistry B, 7 (23), 3639–3643.
  • Zabirnyk, O., Yezhelyev, M., and Seleverstov, O., 2007. Nanoparticles as a novel class of autophagy activators. Autophagy, 3 (3), 278–281.
  • Zhao, Y., et al., 2013. Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small (Weinheim an Der Bergstrasse, Germany), 9 (3), 387–392.
  • Ziemba, B., et al., 2014. Toxicity and proapoptotic activity of poly(propylene imine) glycodendrimers in vitro: considering their contrary potential as biocompatible entity and drug molecule in cancer. International Journal of Pharmaceutics, 461 (1–2), 391–402.
  • Ziemba, B., et al., 2012a. Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. Journal of Biomedical Materials Research. Part A, 100 (11), 2870–2880.
  • Ziemba, B., et al., 2011. In vivo toxicity of poly(propyleneimine) dendrimers. Journal of Biomedical Materials Research. Part A, 99 (2), 261–268.
  • Ziemba, B., et al., 2012b. Genotoxicity of poly(propylene imine) dendrimers. Biopolymers, 97 (8), 642–648.
  • Ziemba, B., et al., 2020. Anti-tumour activity of glycodendrimer nanoparticles in a subcutaneous MEC-1 xenograft model of human chronic lymphocytic leukemia. Anti-Cancer Agents in Medicinal Chemistry, 20 (3), 325–334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.