67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cytoprotective effects of creosote bush (Larrea tridentata) and Southern live oak (Quercus virginiana) extracts against toxicity induced by venom of the black-tailed rattlesnake (Crotalus ornatus)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1698-1706 | Received 18 Sep 2020, Accepted 22 Nov 2020, Published online: 09 Dec 2020

References

  • Aguilar, J., et al., 2012. Extraction and evaluation of condensed tannins from bark of eleven species of trees from Costa Rica. Revista Tecnología en Marcha, 5 (4), 15–22.
  • Alaniia, M., et al., 2013. Study of antioxidant activity of phenolic compounds from some species of Georgian flora. Georgian Medical News, 222 (222), 69–72.
  • Alape-Girón, A., et al., 2008. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. Journal of Proteome Research, 7 (8), 3556–3571.
  • Anderson, C., and Greenbaum, E., 2012. Phylogeography of northern populations of the black-tailed rattlesnake (Crotalus molossus Baird and Girard, 1853), with the revalidation of C. ornatus Hallowell, 1854. Herpetological Monographs, 26 (1), 19–57.
  • Avau, B., et al., 2016. The treatment of snake bites in a first aid setting: a systematic review. PLoS Neglected Tropical Diseases, 10 (10), e0005079.
  • Baharuddin, N.S., Abdullah, H., and Abdul Wahab, W.N., 2015. Anti-candida activity of Quercus infectoria gall extracts against Candida species. Journal of Pharmacy and Bioallied Sciences, 7 (1), 15–20.
  • Bhide, B., et al., 2011. Pharmacognostic evaluation of leaf of Cordia macleodii. Hook., An ethnomedicinally important plant. Ayu, 32 (2), 254–257.
  • Borja, M., et al., 2018. Ontogenetic change in the venom of mexican black-tailed rattlesnakes (Crotalus molossus nigrescens). Toxins, 10 (12), 501.
  • Bustillo, S., et al., 2009. Cytotoxicity and morphological analysis of cell death induced by Bothrops venoms from the northeast of Argentina. Journal of Venomous Animals and Toxins including Tropical Diseases, 15 (1), 167–174.
  • Cho, M.H., et al., 2003. (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proceedings of the National Academy of Sciences of the United States of America, 100 (19), 10641–10646.
  • da Silva, M., et al., 2012. Anti-snake venom activities of extracts and fractions from callus cultures of Sapindus saponaria. Pharmaceutical Biology, 50 (3), 366–375.
  • de la Rosa, L.A., et al., 2001. Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxin. Biochemical Pharmacology, 61 (7), 827–833.
  • Fanoudi, S., et al., 2020. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug and Chemical Toxicology, 43 (3), 240–254.
  • Gopi, K., Renu, K., and Jayaraman, G., 2014. Inhibition of Naja naja venom enzymes by the methanolic extract of Leucas aspera and its chemical profile by GC-MS. Toxicology Reports, 1, 667–673.
  • Gupta, Y.K., and Peshin, S.S., 2012. Do herbal medicines have potential for managing snake bite envenomation? Toxicology International, 19 (2), 89–99.
  • Gutiérrez, J.M., et al., 2015. A call for incorporating social research in the global struggle against snakebite. PLoS Neglected Tropical Diseases, 9 (9), e0003960.
  • Gutiérrez, J.M., León, G., and Burnouf, T., 2011. Antivenoms for the treatment of snakebite envenomings: the road ahead. Biologicals: Journal of the International Association of Biological Standardization, 39 (3), 129–142.
  • Habib, A.G., and Brown, N.I., 2018. The snakebite problem and antivenom crisis from a health-economic perspective. Toxicon: Official Journal of the International Society on Toxinology, 150, 115–123.
  • Harris, J., and Scott-Davey, T., 2013. Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins, 5 (12), 2533–2571.
  • Kakanj, M., et al., 2015. Cytotoxic effect of Iranian Vipera lebetina snake venom on HUVEC cells. Iranian Journal of Pharmaceutical Research, 14 (Suppl), 109–114.
  • Khedrinia, M., Aryapour, H., and Mianabadi, M., 2018. Prediction of novel inhibitors for Crotalus adamanteus l-amino acid oxidase by repurposing FDA-approved drugs: a virtual screening and molecular dynamics simulation investigation. Drug and Chemical Toxicology, 31, 1–10.
  • Lambert, J., et al., 2005. Cytotoxic lignans from Larrea tridentata. Phytochemistry, 66 (7), 811–815.
  • Leanpolchareanchai, J., Pithayanukul, P., and Bavovada, R., 2009. Anti-necrosis potential of polyphenols against snake venoms. Immunopharmacology and Immunotoxicology, 31 (4), 556–562.
  • León, G., et al., 2013. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon: Official Journal of the International Society on Toxinology, 76, 63–76.
  • Li, Y.G., Tanner, G., and Larkin, P., 1996. The DMACA–HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. Journal of the Science of Food and Agriculture, 70 (1), 89–101.
  • Lira-Saldívar, R.H., 2003. Estado actual del conocimiento sobre las propiedades biocidad de la gobernadora (Larrea tridentata (D.C.) Coville). Revista Mexicana de Fitopatología, 21 (2), 241–222.
  • Mackessy, S.P., ed. 2010. Handbook of Venoms and Toxins of Reptiles. Boca Raton, FL: CRC Press.
  • Martínez, S., González, J., and Culebras, J.,   M.J., 2002. Flavonoids: properties and anti-oxidizing action. Nutricion Hospitalaria, 17 (6), 271–278.
  • Martins, W., et al., 2014. A novel Phospholipase A2 (D49) from the venom of the Crotalus oreganus abyssus (North American grand canyon rattlesnake). BioMed Research International, 2014, 654170.
  • Meléndez, D., et al., 2014. Capillary damage in the area postrema by venom of the northern black-tailed rattlesnake (Crotalus molossus molossus). Journal of Venom Research, 5, 1–5.
  • Meléndez-Martínez, D., et al., 2017a. In vitro hemotoxic, α-neurotoxic and vasculotoxic effects of the Mexican black-tailed rattlesnake (Crotalus molossus nigrescens) venom. Journal of Venom Research, 8, 1–8.
  • Meléndez-Martínez, D., et al., 2017b. Rattlesnake Crotalus molossus nigrescens venom induces oxidative stress on human erythrocytes. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23 (1), 24.
  • Moreno, S., et al., 2011. Antifungal effect of gobernadora extracts (Larrea tridentata L.) on in vitro inhibition of Aspergillus flavus and Penicillium sp. Polibotánica, 32, 193–205.
  • Moreno-Escamilla, J.O., et al., 2015. Effect of the smoking process and firewood type in the phytochemical content and antioxidant capacity of red Jalapeño pepper during its transformation to chipotle pepper. Food Research International, 76 (Pt 3), 654–660.
  • Mourão de Moura, V., et al., 2014. A comparison of the ability of Bellucia dichotoma Cogn. (Melastomataceae) extract to inhibit the local effects of Bothrops atrox venom when pre-incubated and when used according to traditional methods. Toxicon, 85, 59–68.
  • Mustafa, H., Ismail, N., and Wahab, W., 2018. Anti-microbial activity of aqueous Quercus infectoria gall extract against pathogenic Leptospira. The Malaysian Journal of Medical Sciences, 25 (4), 42–50.
  • Osorio, E., et al., 2010. Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Industrial Crops and Products, 31 (1), 153–157.
  • Panfoli, I., et al., 2010. Inhibition of hemorragic snake venom components: old and new approaches. Toxins, 2 (4), 417–427.
  • Patiño, A., Benjumea, D., and Pereañez, J., 2013. Inhibition of venom serine proteinase and metalloproteinase activities by Renealmia alpinia (Zingiberaceae) extracts: comparison of wild and in vitro propagated plants. Journal of Ethnopharmacology, 149 (2), 590–596.
  • Peñuelas-Rubio, O., et al., 2017. Larrea tridentata extracts as an ecological strategy against Fusarium oxysporum radicis-lycopersici in tomato plants under greenhouse conditions. Revista Mexicana de Fitopatología, 35 (3), 360–376.
  • Peralta, I., et al., 2018. Food preservation by Larrea divaricata extract: participation of polyphenols. Food Science & Nutrition, 6 (5), 1269–1275.
  • Pérez, V., et al., 2013. Extraction of phenolic compounds from lime peel (Critrus limetta Risso) and antioxidant activity determination. Biotecnia, 15 (3), 18–22.
  • Pithayanukul, P., et al., 2005. Inhibition of Naja kaouthia venom activities by plant polyphenols. Journal of Ethnopharmacology, 97 (3), 527–533.
  • Prajapati, M.S., et al., 2010. Leucas aspera: a review. Pharmacognosy Reviews, 4 (7), 85–87.
  • Ruha, A.M., et al., and ToxIC Snakebite Study Group. 2017. The epidemiology, clinical course, and management of snakebites in the North American snakebite registry. Journal of Medical Toxicology, 13 (4), 309–320.
  • Sánchez, E., et al., 2001. Partial characterization of a basic protein from Crotalus ornatus (Northern Blacktail rattlesnake) venom and production of a monoclonal antibody. Toxicon, 39 (4), 523–537.
  • Shabbir, A., et al., 2014. Protective activity of medicinal plants and their isolated compounds against the toxic effects from the venom of Naja (cobra) species. Journal of Ethnopharmacology, 157, 222–227.
  • Singh, P., et al., 2017. A review on venom enzymes neutralizing ability of secondary metabolites from medicinal plants. Journal of Pharmacopuncture, 20 (3), 173–178.
  • Skouta, R., et al., 2018. Assessing the antioxidant properties of Larrea tridentata extract as a potential molecular therapy against oxidative stress. Molecules, 23 (7), 1826.
  • Slaninová, J., et al., 2012. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides, 33 (1), 18–26.
  • Soni, P., and Bodakhe, S., 2014. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom. Asian Pacific Journal of Tropical Biomedidine, 4 (Suppl 1), 449–454.
  • Srinivasa, V., et al., 2014. Novel apigenin based small molecule that targets snake venom metalloproteases. PLos One, 9, e106364.
  • Ventura, J., et al., 2008. Fungal biodegradation of tannins from Creosote Bush (Larrea tridentata) and Tar Bush (Flourensia cernua) for gallic and ellagic acid production. Food Technology and Biotechnology, 46 (2), 213–217.
  • Vyas, V. K., Brahmbhatt, K., and Parmar, U., 2013. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pacific Journal of Tropical Biomedicine, 3 (2), 156–162.
  • Zúñiga Carrasco, I.R., and Caro Lozano, J., 2013. Aspectos clínicos y epidemiológicos de la mordedura de serpiente en México. Evidencia Médica e Investigación en Salud, 6 (4), 125–136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.