226
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

An Analytical Solution for the Run-Out of Submarine Debris Flows

&
Pages 246-262 | Received 25 Dec 2017, Accepted 09 Feb 2019, Published online: 28 Mar 2019

References

  • Boukpeti, N., D. J. White, M. F. Randolph, and H. E. Low. 2012. Strength of fijkne-grained soils at the solid–fluid transition. Geotechnique 62(3):213–226.
  • Boylan, N., C. Gaudin, D. J. White, and M. F. Randolph. 2010. Modelling of submarine slides in the geotechnical centrifuge. In 7th International conference on physical modelling in geotechnics (ICPMG), 1095–1100. Zurich, Switzerland: ICPMG.
  • Breien, H., M. Pagliardi, F. Blasio, D. Issler, and A. Elverhшi. 2007. Experimental studies of subaqueous vs. subaerial debris flows–velocity characteristics as a function of the ambient fluid. In Submarine Mass Movements and Their Consequences (pp. 101–110). Springer, Dordrecht.
  • Campbell, C. S., P. W. Cleary, and M. Hopkins. 1995. Large‐scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research: Solid Earth 100(B5):8267–8283.
  • Cannon, S. H., and W. Z. Savage. 1988. A mass-change model for the estimation of debris-flow runout. The Journal of Geology 96(2):221–227.
  • De Blasio, F. V., L. Engvik, C. B. Harbitz, and A. Elverhøi. 2004. Hydroplaning and submarine debris flows. Journal of Geophysical Research: Oceans 109(C1):1978–2012. (
  • De Blasio, F. V., A. Elverhøi, D. Issler, C. B. Harbitz, P. Bryn, and R. Lien. 2005. On the dynamics of subaqueous clay rich gravity mass flows—the giant storegga slide, Norway. Marine and Petroleum Geology 22(1-2):179–186.
  • De Blasio, F. V., A. Elverhoi, L. E. Engvik, D. Issler, P. Gauer, and C. Harbitz. 2006. Understanding the high mobility of subaqueous debris flows. Norsk Geologisk Tidsskrift 86(3):275.
  • Gassen, W. V., and D. M. Cruden. 1989. Momentum transfer and friction in the debris of rock avalanches. Canadian Geotechnical Journal 26(4):623–628.
  • Gauer, P., A. Elverhoi, D. Issler, and F. V. De Blasio. 2006. On numerical simulations of subaqueous slides: back-calculations of laboratory experiments of clay-rich slides. Norsk Geologisk Tidsskrift 86(3):295.
  • Google Maps. 2017. Map of San Pedro escarpment: Undersea features. [online]. Google. Available from: http://www.geographic.org/geographic_names/name.php?uni=-241460&fid=6437&c=undersea_features [Accessed 1 May 2017].
  • Gorsline, D. S., R. L. Kolpack, H. A. Karl, D. E. Drake, S. E. Thornton, J. R. Schwalbach, C. E. Savrda, and P. Fleischer. 1984. Studies of fine-grained sediment transport processes and products in the California continental borderland. Geological Society, London, Special Publications 15(1):395–415.
  • Hampton, M., H. Lee, and J. Locat. 1996. Submarine landslides. Reviews of Geophysics 34(1) :33–59.
  • Hürlimann, M., J. O. Garcia-Piera, and A. Ledesma. 2000. Causes and mobility of large volcanic landslides: Application to Tenerife, Canary islands. Journal of Volcanology and Geothermal Research 103(1-4):121–134.
  • Imran, J., P. Harff, and G. Parker. 2001. A numerical model of submarine debris flow with graphical user interface. Computers & Geosciences 27 :717–729.
  • Kafle, J., P. R. Pokhrel, K. B. Khattri, P. Kattel, B. M. Tuladhar, and S. P. Pudasaini. 2016. Landslide-generated tsunami and particle transport in Mountain Lakes and reservoirs. Annals of Glaciology 57(71):232–244.
  • Kattel, P., K. B. Khattri, P. R. Pokhrel, J. Kafle, B. M. Tuladhar, and S. P. Pudasaini. 2016. Simulating glacial lake outburst floods with a two-phase mass flow model. Annals of Glaciology 57(71):349–358.
  • Legros, F. 2002. The mobility of long-runout landslides. Engineering Geology 63(3-4):301–331.
  • Locat, J., and H. J. Lee. 2002. Submarine landslides: Advances and challenges. Canadian Geotechnical Journal 39(1):193–212.
  • Locat, J., H. J. Lee, P. Locat, and J. Imran. 2004. Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis. Marine Geology 203(3-4):269–280.
  • Marr, J. G., A. Elverhøi, C. Harbitz, J. Imran, and P. Harff. 2002. Numerical simulation of mud-rich subaqueous debris flows on the glacially active margins of the Svalbard–Barents sea. Marine Geology 188(3-4):351–364.
  • Marr, J. G., P. Harff, G. Shanmugam, and G. Parker. 2001. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures. Geological Society of America Bulletin 113(11):1377.
  • Masson, D. G., C. B. Harbitz, R. B. Wynn, G. Pedersen, and F. Løvholt. 2006. Submarine landslides: processes, triggers and hazard protection. Philosophical Transactions of the Royal Society 364(1845):2009–2039.
  • Mergili, M., J.-T. Fischer, J. Krenn, and S. P. Pudasaini. 2017. r. avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development 10(2):553–569.
  • Mergili, M., A. Emmer, A. Juřicová, A. Cochachin, J. T. Fischer, C. Huggel, and S. P. Pudasaini. 2018. How well can we simulate complex hydro‐geomorphic process chains? The 2012 multi‐lake outburst flood in the Santa Cruz valley (Cordillera blanca, Perú). Earth Surface Processes and Landforms 43(7):1373–1389.
  • Mohrig, D., A. Elverhøi, and G. Parker. 1999. Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits. Marine Geology 154(1-4):117–129.
  • Norem, H., J. Locat, and B. Schieldrop. 1990. An approach to the physics and the modeling of submarine flowslides. Marine Georesources & Geotechnology 9(2):93–111.
  • Pudasaini, S. P. 2011. Some exact solutions for debris and avalanche flows. Physics of Fluids 23(4):043301.
  • Pudasaini, S. P. 2012. A general two-phase debris flow model. Journal of Geophysical Research 117 F03010. http://dx.doi.org/10.1029/2011JF002186.
  • Pudasaini, S. P. 2014. Dynamics of submarine debris flow and tsunami. Acta Mechanica 225(8):2423–2434.
  • Pudasaini, S. P., and J. T. Fischer. 2016. A mechanical erosion model for two-phase mass flows. arXiv 1610 :01806.
  • Pudasaini, S. P., and C. Kröner. 2008. Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results. Physical Review E 78(4):041308.
  • Pudasaini, S. P., and S. A. Miller. 2013. The hypermobility of huge landslides and avalanches. Engineering Geology 157:124–132.
  • Soundararajan, K. K. 2015. Multi-scale multiphase modelling of granular flows. PhD thes., University of Cambridge, UK.
  • Steffen, M., R. M. Kirby, and M. Berzins. 2008. Analysis and reduction of quadrature errors in the material point method (MPM). International Journal for Numerical Methods in Engineering 76(6):922–948.
  • Tinti, S., and E. Bortolucci. 2000. Analytical investigation on tsunamis generated by submarine slides. Annali de Geofisica 43:519–536.
  • Voight, B., and J. Sousa. 1994. Lessons from ontake-san: a comparative analysis of debris avalanche dynamics. Engineering Geology 38(3-4):261–297.
  • Yin, M., and Y. Rui. 2017. Laboratory study on submarine debris flow. Marine Georesources & Geotechnology 36(8):950–958.
  • Yin, M., Y. Rui, and Y. Xue. 2017. Centrifuge study on the runout distance of submarine debris flows. Marine Georesources & Geotechnology 1–11.https://doi.org/10.1080/1064119X.2017.1411407.
  • Zhu, H., and M. F. Randolph. 2009. Large deformation finite-element analysis of submarine landslide interaction with embedded pipelines. International Journal of Geomechanics 10(4):145–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.