791
Views
26
CrossRef citations to date
0
Altmetric
Articles

Seasonal Deformation of Permafrost in Wudaoliang Basin in Qinghai-Tibet Plateau Revealed by StaMPS-InSAR

, , , &
Pages 248-268 | Received 03 Jun 2019, Accepted 19 Nov 2019, Published online: 10 Dec 2019

References

  • Cheng, G., and T. Wu. 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research 112 (F2): F02S03. doi:10.1029/2006JF000631.
  • Crosetto, M., O. Monserrat, M. Cuevas-González, N. Devanthéry, and B. Crippa. 2016. Persistent Scatterer Interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing 115:78–89.
  • Dai, K., G. Liu, Z. Li, D. Ma, X. Wang, B. Zhang, J. Tang, and G. Li. 2018. Monitoring highway stability in permafrost regions with X-band temporary scatterers stacking InSAR. Sensors 18 (6):1876.
  • Du, Y., G. Feng, Z. Li, X. Peng, J. Zhu, and Z. Ren. 2017. Effects of external digital elevation model inaccuracy on StaMPS-PS processing: A case study in Shenzhen, China. Remote Sensing 9 (11):1115.
  • Dwivedi, R., P. Varshney, A. Tiwari, A. K. Singh, and O. Dikshit. 2014. Assessment of slope stability using PS-InSAR technique. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8:35–8.
  • Farkas, P., R. Hevér, and G. Grenerczy. 2015. Geodetic integration of Sentinel-1A IW data using PSInSAR in Hungary. EGU General Assembly 2015, Vienna, Austria, April 12–17.
  • Hooper, A., P. Segall, and H. Zebker. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research 112 (B7): B07407. doi:10.1029/2006JB004763.
  • Hooper, A., H. Zebker, P. Segall, and B. Kampes. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters 31 (23): L23611. doi:10.1029/2004GL021737.
  • Hu, J., Z. Li, X. Ding, J. Zhu, and Q. Sun. 2016. Spatial–temporal surface deformation of Los Angeles over 2003–2007 from weighted least squares DInSAR. International Journal of Applied Earth Observation and Geoinformation 56 (5):1476–86.
  • Hu, J., Z. Li, X. Ding, J. Zhu, L. Zhang, and Q. Sun. 2014. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews 133:1–17.
  • Jia, Y., J. Kim, C. Shum, Z. Lu, X. Ding, L. Zhang, K. Erkan, C. Kuo, K. Shang, K. Tseng, et al. 2017. Characterization of active layer thickening rate over the Northern Qinghai-Tibetan Plateau permafrost region using ALOS interferometric synthetic aperture radar data, 2007–2009. Remote Sensing 9 (1):84.
  • Jin, H., Z. Wei, S. Wang, Q. Yu, L. Lü, Q. Wu, and Y. Ji. 2008. Assessment of frozen-ground conditions for engineering geology along the Qinghai–Tibet highway and railway, China. Engineering Geology 101 (3-4):96–109.
  • Li, B., G. Gu, and S. Li. 1996. The series of the comprehensive scientific expedition to the Hoh Xil region-Physical environment of Hoh Xil region, Qinghai. Beijing: Science Press.
  • Li, R., L. Zhao, T. Wu, Y. Ding, Y. Xiao, Y. Jiao, L. Sun, and J. Shi. 2013. Soil thermal regime of active layer in Wudaoliang region of the Yangzi River source. Arid Land Geography 36 (2):278–84.
  • Li, Z., Y. Cao, J. Wei, M. Duan, L. Wu, J. Hou, and J. Zhu. 2019. Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating. Earth-Science Reviews 192:258–84.
  • Lin, Z., C. R. Burn, F. Niu, J. Luo, M. Liu, and G. Yin. 2015. The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes 26 (2):142–59.
  • Lin, Z., C. Guodong, and D. Yongjian. 2004. Studies on frozen ground of China. Journal of Geographical Sciences 14 (4):411–6.
  • Liu, G., Y. Wang, Z. Gao, and J. Wen. 2014. Analysis of climate changes in the Wudaoliang, Qinghai-Tibet Plateau during 1957-2012. Journal of Lanzhou University (Natural Science) 50 (3):410–6.
  • Liu, L., K. Schaefer, A. Gusmeroli, G. Grosse, B. M. Jones, T. Zhang, A. D. Parsekian, and H. A. Zebker. 2014. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. The Cryosphere 8 (3):815–26.
  • Liu, L., K. Schaefer, T. Zhang, and J. Wahr. 2012. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence. Journal of Geophysical Research: Earth Surface 117 (F1): F01005. doi:10.1029/2011JF002041.
  • Liu, L., T. Zhang, and J. Wahr. 2010. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. Journal of Geophysical Research 115 (F3): F03023. doi:10.1029/2009JF001547.
  • Li, Z., Zhao, R., Hu, J., Wen, L., Feng, G., Zhang, Z., & Wang, Q. 2015. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils. Scientific reports, 5, 15542.
  • Lu, P., S. Bai, V. Tofani, and N. Casagli. 2019. Landslides detection through optimized hot spot analysis on persistent scatterers and distributed scatterers. ISPRS Journal of Photogrammetry and Remote Sensing 156:147–59.
  • Lu, P., N. Casagli, F. Catani, and V. Tofani. 2012. Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. International Journal of Remote Sensing 33 (2):466–89.
  • Lu, P., F. Catani, V. Tofani, and N. Casagli. 2014. Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 11 (4):685–96.
  • Lu, P., Y. Qin, Z. Li, A. C. Mondini, and N. Casagli. 2019. Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Remote Sensing of Environment 231:111235.
  • Lu, P., A. Stumpf, N. Kerle, and N. Casagli. 2011. Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters 8 (4):701–5.
  • Niu, F., Z. Lin, H. Liu, and J. Lu. 2011. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai–Tibet Plateau. Geomorphology 132 (3-4):222–33.
  • Qu, F., Q. Zhang, Z. Lu, C. Zhao, C. Yang, and J. Zhang. 2014. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment 155:366–276.
  • Ran, Y., X. Li, G. Cheng, T. Zhang, Q. Wu, H. Jin, and R. Jin. 2012. Distribution of permafrost in China: An overview of existing permafrost maps. Permafrost and Periglacial Processes 23 (4):322–33.
  • Schaefer, K., L. Liu, A. Parsekian, E. Jafarov, A. Chen, T. Zhang, A. Gusmeroli, S. Panda, H. Zebker, and T. Schaefer. 2015. Remotely sensed active layer thickness (ReSALT) at Barrow, Alaska using interferometric synthetic aperture radar. Remote Sensing 7 (4):3735–59.
  • Strozzi, T., S. Antonova, F. Günther, E. Mätzler, G. Vieira, U. Wegmüller, S. Westermann, and A. Bartsch. 2018. Sentinel-1 SAR interferometry for surface deformation monitoring in low-land permafrost areas. Remote Sensing 10 (9):1360.
  • Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, B. Rommen, N. Floury, M. Brown, et al. 2012. GMES Sentinel-1 mission. Remote Sensing of Environment 120:9–24.
  • Wang, C., Z. Zhang, H. Zhang, B. Zhang, Y. Tang, and Q. Wu. 2018. Active layer thickness retrieval of Qinghai–Tibet permafrost using the TerraSAR-X InSAR technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (11):4403–13.
  • Wang, T., T. Wu, P. Wang, R. Li, C. Xie, and D. Zou. 2019. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Science of the Total Environment 650:661–70.
  • Wang, Y., Q. Huang, J. Guo, J. Jiang, Q. Wang, and A. Nishyirimbere. 2019. Displacement monitoring and modeling of Qinghai–Tibet Railway in permafrost area using Sentinel-1A data. Arabian Journal of Geosciences 12 (6): 204. doi:10.1007/s12517-019-4393-1.
  • Wang, Z., and S. Li. 1999. Detection of winter frost heaving of the active layer of Arctic permafrost using SAR differential interferograms. Geoscience and Remote Sensing Symposium (IGARSS) 1999, Hamburg, Germany, June 28–July 2.
  • Wu, Q., G. Jiang, and P. Zhang. 2010. Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai–Tibet Plateau. Energy Conversion and Management 51 (4):783–7.
  • Wu, Q., and T. Zhang. 2008. Recent permafrost warming on the Qinghai-Tibetan Plateau. Journal of Geophysical Research 113 (D13): D13108. doi:10.1029/2007JD009539.
  • Xu, X., Z. Zhang, and Q. Wu. 2016. Simulation of permafrost changes on the Qinghai–Tibet Plateau, China, over the past three decades. International Journal of Digital Earth 10 (5):522–38.
  • Yague-Martinez, N., P. Prats-Iraola, F. Rodriguez Gonzalez, R. Brcic, R. Shau, D. Geudtner, M. Eineder, and R. Bamler. 2016. Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing 54 (4):2220–34.
  • Yin, G., F. Niu, Z. Lin, J. Luo, and M. Liu. 2016. Performance comparison of permafrost models in Wudaoliang Basin, Qinghai-Tibet Plateau, China. Journal of Mountain Science 13 (7):1162–73.
  • Zhang, L., X. Xu, and W. Ma. 2001. Permafrost and gas hydrate in the Qinghai-Tibet Plateau. Natural Gas Geoscience 12 (1-2):22–6.
  • Zhang, X., H. Zhang, C. Wang, Y. Tang, B. Zhang, F. Wu, J. Wang, and Z. Zhang. 2019. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai–Tibetan Plateau using Sentinel-1 data. Remote Sensing 11 (9):1000.
  • Zhang, Z., C. Wang, H. Zhang, Y. Tang, and X. Liu. 2018. Analysis of permafrost region coherence variation in the Qinghai–Tibet Plateau with a high-resolution TerraSAR-X image. Remote Sensing 10 (2):298.
  • Zhao, R., Z. Li, G. Feng, Q. Wang, and J. Hu. 2016. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sensing of Environment 184:276–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.