305
Views
14
CrossRef citations to date
0
Altmetric
Articles

Validation of Marine Geoid Models by Utilizing Hydrodynamic Model and Shipborne GNSS Profiles

, ORCID Icon &
Pages 134-162 | Received 23 Sep 2019, Accepted 29 Nov 2019, Published online: 20 Jan 2020

References

  • Ågren, J., G. Strykowski, M. Bilker-Koivula, O. Omang, S. Märdla, R. Forsberg, A. Ellmann, T. Oja, I. Liepins, E. Parseliunas, J. Kaminskis, L. E. Sjöberg, and G. Valsson. 2016. The NKG2015 gravimetric geoid model for the Nordic-Baltic region. Presented at the 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems, September 19–23 in Thessaloniki, Greece.
  • Allik, A. 2014. Satelliitaltimeetria mõõtmiste integreerimine meretaseme prognoosimudeliga [The integration of satellite altimetry and sea level forecast model]. Bachelor's thesis, Tallinn University of Technology. Accessed April 4, 2019. https://digi.lib.ttu.ee/i/?7017.
  • Andrejev, O., K. Myrberg, P. Alenius, and P. A. Lundberg. 2004a. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modelling. Boreal Environment Research 9 (1):1–16. Accessed July 18, 2019. http://www.borenv.net/BER/pdfs/ber9/ber9-001.pdf.
  • Andrejev, O., K. Myrberg, and P. A. Lundberg. 2004b. Age and renewal time of water masses in a semi-enclosed basin – application to the Gulf of Finland. Tellus A: Dynamic Meteorology and Oceanography 56 (5):548–58.
  • Barrass, C. B. 2004. Ship design and performance for masters and mates. Oxford: Elsevier Butterworth-Heinemann.
  • Bilker-Koivula, M. 2010. Development of the Finnish Height Conversion Surface FIN2005N00. Nordic Journal of Surveying and Real Estate Research 7 (1):76–88.
  • Bruinsma, S. L., C. Förste, O. Abrikosov, J.-M. Lemoine, J.-C. Marty, S. Mulet, M.-H. Rio, and S. Bonvalot. 2014. ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters 41 (21):7508–14. doi:10.1002/2014GL062045
  • Bruinsma, S. L., C. Förste, O. Abrikosov, J.-C. Marty, M.-H. Rio, S. Mulet, and S. Bonvalot. 2013. The new ESA satellite‐only gravity field model via the direct approach. Geophysical Research Letters 40 (14):3607–12. doi:10.1002/grl.50716
  • Delpeche-Ellmann, N., T. Mingelaitė, and T. Soomere. 2017. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea. Journal of Marine Systems 171:21–30. doi:10.1016/j.jmarsys.2016.10.007
  • Delpeche-Ellmann, N., T. Torsvik, and T. Soomere. 2016. A comparison of the motions of surface drifters with offshore wind properties in the Gulf of Finland, the Baltic Sea. Estuarine, Coastal and Shelf Science 172:154–64. doi:10.1016/j.ecss.2016.02.009
  • Ellmann, A., S. Märdla, and T. Oja. 2019. The 5 mm geoid model for Estonia computed by the least squares modified Stokes’s formula. Survey Review. doi:10.1080/00396265.2019.1583848
  • Ellmann, A., T. Oja, and H. Jürgenson. 2011. Kosmosetehnoloogia rakendused geoidi ja gravitatsioonivälja täpsustamiseks Eesti alal [Application of space technologies to improve geoid and gravity field models over Estonia]. Geodeet 41:22–5.
  • Ellmann, A., T. Oja, T. All, H. Jürgenson, T. Kall, and A. Liibusk. 2016. Raskuskiirenduse anomaalvälja ja geoidi mudelpinna täpsustamine Eestis [Enhanced gravity field and geoid models over Estonia]. Publicationes Geophysicales Universitatis Tartuensis 51:152–64. Accessed April 24, 2019. http://www.maaamet.ee/data/files/Ellmann_etal_metobs_150_2016.pdf.
  • FAMOS. 2019. Finalising surveys for the Baltic Motorways of the Sea webpage [online]. Accessed May 22, 2019. https://www.famosproject.eu/famos/.
  • Forsberg, R., G. Strykowski, and D. Solheim. 2004. NKG-2004 geoid of the Nordic and Baltic Area. Presented at the in IAG International Symposium ‘Gravity, Geoid and Satellite Gravity Missions’, August 30 – September 3, Porto, Portugal. Proceedings on CD-ROM from the International Association of Geodesy.
  • Huess, V. 2018. Product User Manual for Baltic Sea Physical Analysis and Forecasting Product BALTICSEA_ANALYSIS_FORECAST_PHY_003_006. Accessed March 26, 2019. http://cmems-resources.cls.fr/documents/PUM/CMEMS-BAL-PUM-003-006.pdf.
  • Izotova, J. 2015. Operatiivsete meremudelite valideerimine ja võrdlus Läänemere idaosas [Validation of Operational Ocean Models in The Eastern Baltic Sea, thesis in Estonian]. Bachelor's thesis, Tallinn University of Technology. Accessed April 18, 2019. https://digi.lib.ttu.ee/i/?2677.
  • Jürgenson, H., A. Liibusk, and A. Ellmann. 2008. Geoid profiles in the Baltic Sea determined using GPS and sea level surface. Geodesy and Cartography 34 (4):109–15. doi:10.3846/1392-1541.2008.34.109-115
  • Kakkuri, J., and M. Poutanen. 1997. Geodetic determination of the surface topography of the Baltic Sea. Marine Geodesy 20 (4):307–16. doi:10.1080/01490419709388111
  • Kleine, E. 1994. Das Operationelle Modell des BSH für Nordsee und Ostsee. Konzeption und Übersicht, Bundesamt für Seeschifffahrt und Hydrographie (manuscript report in German).
  • Kollo, K., and A. Ellmann. 2019. Geodetic reconciliation of tide gauge network in Estonia. Geophysica 54:27–38.
  • Lagemaa, P. 2012. Operational forecasting in Estonian marine waters. PhD thesis, Tallinn University of Technology. Accessed March 25, 2019. https://digi.lib.ttu.ee/i/?714.
  • Lagemaa, P. 2015. Operatiivne meremudel HBM-EST Tehniline juhend [Technical manual for HBM-EST operational forecasting model]. Accessed March 26, 2019. https://www.kik.ee/sites/default/files/uuringud/operatiivne_meremudel_hbm-est.pdf
  • Lagemaa, P., J. Elken, and T. Kõuts. 2011. Operational sea level forecasting in Estonia. Estonian Journal of Engineering 17 (4):301–31. doi:10.3176/eng.2011.4.03
  • Lavrov, D., G. Even-Tzur, and J. Reinking. 2016. Expansion and improvement of the Israeli geoid model by ship-borne GNSS measurements. Journal of Surveying Engineering 143 (2).
  • Le Provost, C. 1990. The Geoid and Mean Sea Level. International Hydrographic Review 67 (1):171–5. Accessed May 4, 2019. https://journals.lib.unb.ca/index.php/ihr/article/viewFile/23325/27100.
  • Lehmann, A., W. Krauss, and H.-H. Hinrichsen. 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A: Dynamic Meteorology and Oceanography 54 (3):299–316. doi:10.1034/j.1600-0870.2002.00289.x
  • Liibusk, A., A. Ellmann, T. Kõuts, and H. Jürgenson. 2013. Precise hydrodynamic levelling by using pressure gauges. Marine Geodesy 36 (2):138–63. doi:10.1080/01490419.2013.771594
  • Mayer-Gürr, T., R. Pail, T. Gruber, T. Fecher, M. Rexer, W.-D. Schuh, J. Kusche, J.-M. Brockmann, D. Rieser, N. Zehentner, A. Kvas, B. Klinger, O. Baur, E. Höck, S. Krauss, and A. Jäggi. 2015. The combined satellite gravity field model GOCO05s. In European Geosciences Union General Assembly, 12–17 April 2015, Vienna, Austria. DOI:
  • Metsar, J., K. Kollo, and A. Ellmann. 2018. Modernization of the Estonian National GNSS Reference Station Network. Geodesy and Cartography 44 (2):55–62. doi:10.3846/gac.2018.2023
  • Myrberg, K., and T. Soomere. 2013. The Gulf of Finland, Its Hydrography and Circulation Dynamics. In Preventive methods for coastal protection, eds. T. Soomere and E. Quak, 181–222.
  • Myrberg, K., V. Ryabchenko, A. Isaev, R. Vankevich, O. Andrejev, J. Bendtsen, A. Erichsen, L. Funkquist, A. Inkala, I. Neelov, K. Rasmus, M. Rodriguez Medina, U. Raudsepp, J. Passenko, J. Söderkvist, A. Sokolov, H. Kuosa, T. R. Anderson, A. Lehmann, and M. D. Skogen. 2010. Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Environment Research 15 (5):453–79. Accessed August 10, 2019. http://www.borenv.net/BER/pdfs/ber15/ber15-453.pdf.
  • Märdla, S., J. Ågren, G. Strykowski, T. Oja, A. Ellmann, R. Forsberg, M. Bilker-Koivula, O. Omang, E. Paršeliūnas, I. Liepinš, and J. Kaminskis. 2017. From discrete gravity survey data to a high-resolution gravity field representation in the Nordic-Baltic region. Marine Geodesy 40 (6):416–53. doi:10.1080/01490419.2017.1326428
  • Nordman, M., J. Kuokkanen, M. Bilker-Koivula, H. Koivula, P. Häkli, and S. Lahtinen. 2018. Geoid Validation on the Baltic Sea Using Ship-borne GNSS Data. Marine Geodesy 41 (5):457–76. doi:10.1080/01490419.2018.1481160
  • Oja, T., A. Ellmann, and S. Märdla. 2019. Gravity anomaly field over Estonia. Estonian Journal of Earth Sciences 68 (2):55–75. doi:10.3176/earth.2019.06
  • Olesen, A. V. 2017. Marine gravity onboard MS Sektori July 2017, processing report. Danish Technical University (DTU).
  • Pail, R., S. Bruinsma, F. Migliaccio, C. Förste, H. Goiginger, W.-D. Schuh, E. Höck, M. Reguzzoni, J. M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R. Mayrhofer, I. Krasbutter, F. Sansò, and C. C. Tscherning. 2011. First GOCE gravity field models derived by three different approaches. Journal of Geodesy 85 (11):819–43. doi:10.1007/s00190-011-0467-x
  • Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth 117 (B4).
  • Sjöberg, L. E. 2003. A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. Journal of Geodesy 77 (7):423–32. doi:10.1007/s00190-003-0338-1
  • Sjöberg, L. E., and M. Bagherbandi. 2017. Applications and Comparisons of LSMSA and RCR. In Gravity inversion and integration, eds. L. E. Sjöberg and M. Bagherbandi, 181–202.
  • Slobbe, D. C., R. Klees, M. Verlaan, F. Zijl, B. Alberts, and H. H. Farahani. 2018. Height system connection between island and mainland using a hydrodynamic model: A case study connecting the Dutch Wadden islands to the Amsterdam ordnance datum (NAP). Journal of Geodesy 92 (12):1439–56. doi:10.1007/s00190-018-1133-3
  • Varbla, S. 2019. Assessment of marine geoid models by shipborne GNSS and airborne laser scanning profiles. Master’s thesis, Tallinn University of Technology. Accessed June 17, 2019. https://digi.lib.ttu.ee/i/?12483.
  • Varbla, S., A. Ellmann, S. Märdla, and A. Gruno. 2017. Assessment of marine geoid models by ship-borne GNSS profiles. Geodesy and Cartography 43 (2):41–9. doi:10.3846/20296991.2017.1330771
  • Zijl, F., M. Verlaan, and H. Gerritsen. 2013. Improved water-level forecasting for the northwest European shelf and North Sea through direct modelling of tide, surge and non-linear interaction. Ocean Dynamics 63 (7):823–47. doi:10.1007/s10236-013-0624-2
  • Zijl, F., J. Sumihar, and M. Verlaan. 2015. Application of data assimilation for improved operational water level forecasting on the northwest European shelf and North Sea. Ocean Dynamics 65 (12):1699–716. doi:10.1007/s10236-015-0898-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.